
1

Abstract

A flexible communication mechanism is a desirable feature in
multiprocessors because it allows support for multiple communi-
cation protocols, expands performance monitoring capabilities,
and leads to a simpler design and debug process. In the Stanford
FLASH multiprocessor, flexibility is obtained by requiring all
transactions in a node to pass through a programmable node con-
troller, called MAGIC. In this paper, we evaluate the performance
costs of flexibility by comparing the performance of FLASH to
that of an idealized hardwired machine on representative parallel
applications and a multiprogramming workload. To measure the
performance of FLASH, we use a detailed simulator of the FLASH
and MAGIC designs, together with the code sequences that imple-
ment the cache-coherence protocol. We find that for a range of
optimized parallel applications the performance differences
between the idealized machine and FLASH are small. For these
programs, either the miss rates are small or the latency of the pro-
grammable protocol can be hidden behind the memory access
time. For applications that incur a large number of remote misses
or exhibit substantial hot-spotting, performance is poor for both
machines, though the increased remote access latencies or the
occupancy of MAGIC lead to lower performance for the flexible
design. In most cases, however, FLASH is only 2%-12% slower
than the idealized machine.

1 Introduction

The Stanford FLASH (FLexible Architecture for SHared mem-
ory) multiprocessor is one of several recent proposals designed to
integrate a cache-coherent shared address space and message pass-
ing in a single architecture, and to scale cost-effectively from
small-scale to large-scale machines [ACD+91, NPA92, NWD93,
RLW94]. It achieves these goals by replacing the traditional hard-
wired node controller with a programmable microcontroller, called
MAGIC (Memory And General Interconnect Controller), that can
run different code sequences to implement different protocols. All
transactions within a node, both those that are generated locally
and those that come from remote nodes, go through MAGIC.

The flexibility of a programmable controller has several advan-
tages: it simplifies the design and debugging process, allows
enhancements of functionality, permits experimentation with new
protocols, and allows extensive and accurate performance moni-
toring. Flexibility, however, comes at a cost in performance, since
one can always build a hardwired controller that outperforms a
flexible one for any given communication protocol.

In this paper, we examine the performance cost of flexibility in
the context of supporting cache-coherence on FLASH (the perfor-
mance of our initial message-passing implementation is discussed
in [HGD+94]). We compare the execution time of representative
parallel applications and a multiprogramming workload running
on FLASH to their run time on an idealized machine in which all
node controller operations take zero time.

The flexible node controller in FLASH can cause performance
loss for two reasons: (i) the direct contribution that the latency of
the node controller makes to memory operations such as cache
misses, and (ii) the indirect contribution due to contention result-
ing from the occupancy of the centralized controller. For many
types of transactions, the extra latency of the programmable imple-
mentation can be hidden behind the memory access time. Unfortu-
nately, this is not always the case. For example, the latencies of
remote operations are significantly higher in FLASH. Our experi-
ments show that these increased latencies usually have a small
impact on the performance of optimized workloads.

The occupancy of the flexible node controller is also not a bot-
tleneck for well-written parallel applications. When the occupancy
does become large, for example in the presence of significant hot-
spotting, we find that it hurts the performance of FLASH relative
to the idealized machine only when the controller occupancy is
high and the memory occupancy is simultaneously low. The
insights from our experiments highlight the potential bottlenecks
in scalable cache-coherent machines.

The next section presents a brief overview of the FLASH archi-
tecture. A more complete description can be found in [KOH+94].
Section 3 describes our experimental methodology, the machine
models we compare, and the applications we use. Section 4 com-
pares the performance of FLASH and the idealized machine.
Section 5 evaluates the effectiveness of various architectural fea-
tures of FLASH. Section 6 presents our main conclusions.

2 FLASH Overview

Every FLASH node contains an off-the-shelf microprocessor,
its secondary cache, a portion of the machine’s distributed mem-
ory, and a flexible node controller called MAGIC, as shown in
Figure 2.1. MAGIC implements the interfaces between the node’s

The Performance Impact of Flexibility in the
Stanford FLASH Multiprocessor

Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel Baxter,
Jaswinder Pal Singh, Richard Simoni, Kourosh Gharachorloo, David Nakahira,

Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

To appear in Proceedings of the 6th International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS-VI), San Jose, CA, October 1994.

2

processor, local memory system, I/O subsystem, and the intercon-
nection network. As the heart of the FLASH node, MAGIC is
responsible for processing all requests from these interfaces and
for implementing the cache-coherence and message-passing proto-
cols.

Flexibility demands that MAGIC be able to observe and control
all system transactions. MAGIC’s central location within the
FLASH node satisfies this requirement, but also means that
MAGIC can become a performance bottleneck. There are two
potential sources of performance loss: the centralized nature of the
controller, and the additional processing overhead caused by using
a flexible controller rather than a hardwired one. The former
source is mostly orthogonal to flexibility. Deadlock avoidance and
other issues make the implementation of a decentralized design
more difficult, regardless of whether it is flexible. Added latency
due to the use of a flexible controller, however, clearly is a perfor-
mance liability of flexibility. To be conservative, we assume that
one could construct a decentralized, hardwired controller and that
all performance degradation in FLASH is a cost of flexibility.

MAGIC incorporates several architectural features to make
protocol processing efficient, as shown in Figure 2.2. Since proto-
col processing consists of two largely independent tasks—moving
data and updating protocol state—MAGIC separates data move-
ment from control processing, allowing the two tasks to proceed
concurrently. The hardwired data transfer logic is optimized for
low latency and high bandwidth, while the programmable control
macropipeline handles all protocol processing in a flexible, proto-
col-independent manner. To see how these paths are used to pro-
cess a message, we first describe the overall flow of a message
through MAGIC (we refer to any inter- or intra-node communica-
tion as a message). Then we describe the specific architectural fea-
tures used to enhance efficiency.

When a message enters the MAGIC chip from the processor,
network, or I/O subsystem interface (the PI, NI, or I/O, respec-
tively), it is split into message data and a message header. The
message data is placed into a data buffer, a cache line-sized (128-
byte) on-chip storage element used to stage data as it is passed
between interfaces. The message header is initially stored in an
incoming queue. The first stage in the control macropipeline, the
inbox, later selects the message header from its queue, prepro-
cesses the header, and passes it to the protocol processor (PP). The
PP is a general purpose microprocessor core that is responsible for
updating protocol data structures, composing outgoing messages,
and controlling the data transfer logic. Outgoing message sends are
handled by the outbox, which accepts outgoing messages from the

Figure 2.1. FLASH machine and node organization.

2$

I/ONetwork

2nd-Level
Cache

2nd-Level
Cache

DRAM μP

MAGIC

μPDRAM

MAGIC

PP and directs them to the proper destination interface unit. There,
the outgoing message headers are combined with their associated
data from the data buffer and passed to the processor, network, or
I/O subsystem.

To avoid the store-and-forward delays associated with transfer-
ring large data blocks, the data transfer logic supports pipelined
transfers. Each data buffer is tagged with per-word valid bits and is
multiported, allowing a destination interface to read the data while
the source interface fills the data buffer. This hardware eliminates
the need for multiple data copy operations and makes the latency
of a data transfer independent of the transfer size.

In addition to pipelining the control and datapath, MAGIC
incorporates several other architectural features to enhance effi-

Figure 2.2. MAGIC architecture.

Protocol Processor

Inbox
MAGIC

Data
Cache

PI

Processor Network I/O

PI NI I/O

PI NI I/O

Message Split

Protocol Processor

Inbox

MAGIC
Inst

Cache

MAGIC
Data

Cache
Data

Buffers

Incoming Queues

Outgoing Queues

data header

Memory
OutboxOutbox

Message Join
data header

3

ciency. First, the inbox uses parts of the message header to index
into a small associative memory array called the jump table. The
output of the jump table specifies the starting program counter
value for the PP code sequence (or handler) appropriate for the
message, as well as whether to initiate a speculative memory oper-
ation for the address contained in the message header. These
inbox-initiated memory operations are called “speculative”
because the data retrieved may not actually be needed (e.g., if the
requested data is dirty in a remote processor’s cache, the data in
memory is not the most up-to-date copy). Issuing the speculative
memory operation allows the memory access to begin even before
the PP begins processing the message.

Second, to decrease its occupancy, the PP has been optimized
for efficient protocol processing. Its instruction set, based on
DLX [HP90], has been extended to include bitfield insert/extract
and branch on bit set/clear instructions. In addition, the PP is a
dual-issue machine, executing a pair of instructions every cycle.
To simplify implementation, the PP does not include support for
resource conflict detection; all instruction pairs must be statically
scheduled to avoid dependencies.

Finally, in FLASH all protocol code and data are maintained in
main memory, rather than in separate dedicated storage. To avoid
consuming excessive memory bandwidth, the PP accesses this
information through the MAGIC instruction cache and MAGIC
data cache, respectively. We explore the individual performance
effects of these architectural features in Section 5.

3 Experimental Methodology and
Machine Parameters

The results presented in this paper are gathered from FlashLite,
the FLASH system-level simulator. FlashLite is a multithreaded
memory system simulator that interfaces to the Tango
Lite [Golds93] event-driven reference generator and to the SimOS
environment [RV94]. It accurately models the latencies and con-
tention effects in the system, using cycle counts and arbitration
information from our working Verilog model of MAGIC. The
availability of accurate timing information is a crucial aspect of
our performance evaluation, since the performance impact of flexi-
bility depends heavily on the cycle counts one assumes.

3.1 Machine Models

We simulate the MAGIC design we plan to use in the real
machine, including detailed parameters such as queue depths,
number of data buffers, and the time to retrieve data from the pro-
cessor’s cache. Table 3.1 summarizes the queue and buffer sizes in
MAGIC, and the consequences of exceeding them. As noted ear-
lier, we assume an idealized implementation for the hypothetical

Table 3.1. MAGIC Resource Limits

Resource Size Impact if full/unavailable

Incoming network queues 16 messages Messages back up into the network

Outgoing network queues 16 messages PP stalls until outgoing queue space is available

Memory controller queue 1 request PP or inbox stalls until queue entry is available

Inbox-to-PP queue 1 message Inbox stalls until PP reads new message from queue

Outgoing PI queue 1 message PP stalls on next send until PI can accept a new message

Incoming PI queue 16 messages Processor stalls until queue space is available

Data buffers 16 buffers Unit needing a data buffer stalls until one is available

hardwired machine (which we refer to as the ideal machine). Spe-
cifically, we replace MAGIC’s macropipeline with an idealized
controller that can process all protocol operations in zero time. The
only delays that the ideal machine encounters are those due to con-
tention for shared resources (such as the processor bus, memory
system, and network) and data transfer delays. We further assume
an infinite depth for all network and memory system queues,
which means that the ideal machine will never stall waiting for
queue space to become available. The ideal machine uses the same
cache-coherence protocol as FLASH (see Section 3.3). However,
because it processes all protocol operations in zero time, its direc-
tory implementation is irrelevant and can be thought of as an
instantaneous oracle.

Of course, this ideal machine cannot actually be built. Protocol
operations would take some time even in a hardwired implementa-
tion. Moreover, it is unclear that a deadlock-free implementation
can be built without any central serialization of events within a
node. However, the protocol overhead and amount of required seri-
alization in a real implementation is subject to debate, and using
this idealized model gives us an upper bound on the performance
costs of MAGIC’s flexibility.

3.2 Common Characteristics

Both FLASH and the ideal machine employ the same compute
processor, cache, network, and memory system. We assume an
aggressive, 400 MIPS compute processor as being representative
of state-of-the-art next-generation microprocessors. Since faster
processors issue more memory requests per unit time, our choice
of a very fast processor exacerbates the performance costs of
FLASH’s flexibility. MAGIC operates at its target speed of 100
MHz. Thus, the processor can issue up to four memory requests
(peak) during each system clock cycle. All cycle counts we report
in the paper are expressed in 10 ns system clock cycles.

The processor is assumed to have blocking reads but non-
blocking writes: a write will stall execution only if another miss is
outstanding to a line that maps to the same cache index as, but has
a different tag than, the current request. A write that maps to the
same cache index and has the same tag as an outstanding miss will
be merged with that miss and will not stall the processor. The pro-
cessor cache is two-way set associative, has a line size of 128
bytes, and supports up to 4 outstanding cache misses. In addition,
to minimize its miss penalty, the cache assumes critical-word-first
data return. The processor implements its own cache control, so
MAGIC must issue a processor bus transaction to retrieve data
from or perform invalidations to the processor’s cache.

Both machines use a 128-byte cache line and a 64-bit path to
the memory system. We assume a 14-cycle memory access time
for both machines, a figure that is somewhat smaller than the
actual memory system latencies of current uniprocessor worksta-

4

tions.1 The access time refers to the number of cycles from the
time a memory operation reaches the front of the memory control-
ler’s queue to the time the first 64 bits of data are returned to the
node controller. FlashLite models memory system contention
accurately.

Any time a message enters the network, it is charged a fixed
network transit latency. This latency is based on the average transit
time for a two-dimensional mesh network having a per-hop fall-
through time of 40 ns [Intel94]. For our 16-processor simulations,
the average message requires latency equivalent to one hop to both
enter and exit the network, 2.6 hops of network transit, and 3
cycles of network header information, yielding an average transit
time of 220 ns, or 22 cycles.

3.3 Memory Latencies and Occupancies

In Table 3.2, we list the suboperations of a memory request and
compare the latencies for the actual MAGIC chip to those assumed
for the ideal machine. For the ideal machine, the only latencies are
those representing data transit or arbitration; all other macropipe-
line suboperations are assumed to complete in zero time.

The “varies” entry in the table for PP processing time in
FLASH indicates that the time required to service a request varies
with the type of request, since different requests invoke different
code sequences on the PP. The time to service a request also
depends on the directory organization. The initial protocol we will
run on the FLASH prototype is the dynamic pointer allocation
protocol [Simoni92, KOH+94]. In this scheme, each main memory
line has an associated directory header which contains some status
bits and a link to a linked list of sharing nodes. Most protocol oper-
ations require access to the directory header. Depending on the
state of the line and the type of request, a traversal of the linked list
of sharers may also be needed.

For accuracy in our performance evaluation of flexibility, we
took the hardware suboperation latencies from the MAGIC Verilog
model and the protocol code latencies from an instruction set emu-
lator we wrote for the PP and integrated with FlashLite. The proto-
col handlers that we plan to run on the real PP have been coded in
C and compiled using a port of the gcc compiler [Stall93] to the PP
architecture. The compiler output is scheduled using PPtwine, a
port of the superscalar instruction scheduler originally designed for
the Torch project [Smith92]. Finally, the output of PPtwine is
hand-tuned slightly to overcome some limitations in the current
software tools. PPsim, the instruction set emulator for the PP, exe-
cutes the handlers and reports accurate instruction usage statistics
and dynamic cycle counts.

Table 3.3 lists the latencies of common memory operations
(cache read misses) in FLASH and the ideal machine, assuming no
contention. The latency numbers in the table represent the total
number of cycles required to service the request from the time the
processor detects the miss in its cache to the time the first 8 bytes
of data are returned on the processor bus. In addition, for each type
of read miss, Table 3.3 lists the total PP occupancy of all the han-
dlers that must be run to satisfy that miss. These occupancies are
further broken down into their individual components in Table 3.4.

To make the derivation of the latencies in Table 3.3 more con-
crete, Figure 3.1 depicts the suboperations of a local read miss to a
clean line for both FLASH and the ideal machine. Note how the
MAGIC PP handler time is overlapped almost completely with the
local memory access. To the extent that the protocol processing

1. The DEC Alpha 3000, for example, performs a 32-byte cache fill in 180
ns [DEK+92]. The current SPARCStation 10 machines require 190 ns to
the first word; new models will reduce this time to 160 ns.

can be hidden in this manner, the latency of the flexible processing
does not impact the total request service latency, and the only pos-
sible drawback is the increased latency due to the occupancy of the
PP. Unfortunately, the potential to overlap PP processing with
memory access is reduced for remote memory operations. Since a
remote message requires processing by at least two nodes, the
overhead of entering and exiting the nodes leads to a greater dis-
crepancy in the remote memory operation latencies than in the
local memory operation latencies.

In addition to latencies incurred when servicing memory refer-
ences, other protocol transactions also impact PP occupancy in
FLASH. Specifically, message types such as invalidation requests,
invalidation acknowledgments, and replacement hints do not
require memory system access, but servicing these messages can
require a significant number of PP processing cycles. The added

Table 3.2. Suboperation Latencies in 10 ns Cycles

Suboperation
MAGIC
 Latency

Ideal
Latency

Processor:
Miss detect to request on bus
Bus transit

5
1

5
1

Processor Interface:
Inbound processing
Outbound processing
Outbound bus arbitration
Outbound bus transit for 1st word
Retrieve state from processor cache
Retrieve first double word of data

from processor cache

1
4
1
1
15
20

1
2
1
1
15
20

Network Interface:
Inbound processing
Outbound processing

8
4

8
4

Inbox:
Queue selection and arbitration
Jump table lookup

1
2

1
N/A

Protocol Processor:
Handler execution
MDC miss penalty

Varies
29

N/A
N/A

Outbox outbound processing 1 N/A

Network transit, average case 22 22

Memory access, time to first 8 bytes 14 14

Table 3.3. Memory Latencies and Occupancies,
No Contention, in 10 ns Cycles

Operation
Ideal

Latency
FLASH

 Latency PP Occ.

Local read miss:

Clean in local node’s memory

Dirty in remote cache

24

100

27

143

11

53

Remote read miss:

Clean in home node’s memory

Dirty in home node’s cache

Dirty in a 3rd node’s cache

92

100

136

111

145

191

16

53

61

5

PP occupancy leads to additional queuing delays, which can
increase the latency of subsequent memory operations. In compar-
ison, the ideal machine assumes zero PP occupancy and can ser-
vice these messages continuously and infinitely fast, avoiding the
queuing delays encountered in FLASH. Thus, FLASH has both
latency and occupancy disadvantages relative to the ideal machine.

3.4 The Applications

We used two main criteria in choosing the applications for our
evaluation: they should be representative of important classes of
computations likely to be run on a multiprocessor like FLASH,
and they should span a range of memory referencing and commu-
nication patterns. Since we intend FLASH to operate in both tradi-
tional supercomputing environments and general-purpose
multiprogramming environments, we focused on two categories of
applications: parallel scientific applications, and OS multipro-
gramming workloads. The applications, the computational classes
they represent, and the input data set sizes we use for them are
listed in Table 3.5. Descriptions of the parallel applications can be
found in: LU and FFT [RSG93]; Ocean and Radix [WSH94]; Bar-
nes and MP3D [SWG92].

Figure 3.1. Suboperations of a local memory read.

Table 3.4. PP Occupancies for Common Operations,
in 10 ns Cycles

Operation PP Occupancy

Service read miss from main memory 11

Service write miss from main memory 14 + 10 to 15
per invalidation

Forward request to home node 3

Forward request from home to dirty node 18

Retrieve data from processor cache 38

Forward reply from network to processor 2

Local writeback 10

Local replacement hint 7

Writeback from a remote processor 8

Replacement hint from remote processor:
Processor is only node on sharer list
Processor is Nth node on sharer list

17
23 + 14 * N

The problem sizes we use for the parallel applications are real-
istic, and would be run on 16-processor machines in practice.
However, owing to the costs of simulation, they clearly are not the
largest problem sizes one would run. Some of the applications
have two important operating points, both of which are representa-
tive on modern machines such as FLASH: one in which the impor-
tant working set of a processor fits in its cache, and the other in
which it does not (for example, in a regular-grid iterative computa-
tion, a processor’s partition may or may not fit in the cache,
depending on the size of the grid being used). Simulating the 1 MB
caches in FLASH with the problem sizes we use, we are able to
capture only the first of these modes, so that we see only the effects
of inherent communication, false sharing, and cold misses, but not
of misses due to cache capacity.

To capture the behavior in cases where the working set does not
fit in the cache, we ran the same applications with two smaller
cache sizes: 4 KB and 64 KB. The 4 KB size is smaller than the
working set in all cases, and the intermediate 64 KB size is useful
because working sets are sometimes not clearly defined with low-
associativity caches [RSG93]. For some applications, the smaller
cache simulations either are not useful, or are not representative of
any realistic situation that would occur with 1 MB caches on the
real machine. As a result, we do not simulate LU or the OS work-
load with either 64 KB or 4 KB caches, and we do not simulate
Barnes with 4 KB caches.

To evaluate the performance of the machines under an OS
workload, we use the SimOS environment to capture all code and
data references from both the operating system and user-level
code, and model the hardware of a multiprocessor in enough detail
to boot an operating system and run a workload. The multipro-
gramming simulations are parameterized with the same CPU and
cache model as the parallel application simulations and use
FlashLite as the memory system simulator. To remove I/O delays
and focus the comparison on CPU and memory system perfor-
mance, the simulation environment models a zero-latency system
disk that can DMA into any node’s memory.

The OS workload uses a port of Silicon Graphics IRIX 5.2, an
SVR4 Unix-based operating system. IRIX is a symmetric multi-
processing kernel with relatively fine-grained locking that has been
optimized for bus-based machines with uniform memory access
times. Since larger configurations of our NUMA machines spend
more than half their execution time waiting on locks in IRIX, we
use only 8-processor configurations for the OS workload. Because
IRIX lacks a NUMA memory allocator, we allocate the physical
pages of the machine round-robin across the local node memories.
On top of IRIX, we ran eight copies of a “make” of a small pro-

Cycles

0 5 10 15 20 25 30

Cycles

0 5 10 15 20 25 30

CPU Miss Detect PIBus Inbox

Memory Access

PP Handler Out PI Arb Bus

CPU Miss Detect PIBus Ibx Arb Bus

Memory Access

FLASH, Local memory read, 27 cycles total

Ideal, Local memory read, 24 cycles total

6

ideal machine. However, communication is so high that even the
ideal machine performs poorly on this application.

For the six parallel applications, the performance difference can
be derived analytically by taking the ratio of FLASH CRMT to
ideal CRMT and multiplying it by the fraction of time stalled in the
memory system for the ideal machine. Thus, for these experi-
ments, where the working sets fit in the cache, the performance dif-
ference between the FLASH and ideal machines is governed solely
by their inherent latency difference.

The results for the multiprogramming workload cannot be
explained by latency differences alone. The occupancy of the pro-
tocol processor is quite high for this workload, reaching a maxi-
mum of 39%. Some of the occupancy increase is caused by
MAGIC Data Cache misses, which we discuss in Section 5.2, and
the rest by mild hot-spotting in the memory system. Hot-spotting
tends to favor the ideal machine in this study, since it results in
queueing delays in the FLASH machine that are not present in the
zero-occupancy ideal machine. We examine hot-spotting and occu-
pancy effects further in Section 4.3.

4.2 Results with Smaller Caches

Let us now examine the cases where the working sets do not fit
in the processor cache by using smaller caches as discussed in
Section 3.4. The introduction of substantial capacity misses not
only increases the number of misses that must be processed, but in
some cases also increases the communication to computation ratio.
The cache miss rates and their distributions with the intermediate
(64 KB) and small (4 KB) caches are shown in Table 4.2.

Figure 4.2 and Figure 4.3 depict the execution time break-
downs for the 64 KB and 4 KB cache runs, respectively. As
expected, both machines show a significant drop in the processor
utilization and a significant increase in the cache miss rate.
Because the applications are now spending a larger fraction of
their execution time stalled on the memory system, one might
expect that the FLASH machine’s performance would degrade fur-
ther from the ideal machine’s performance. However, this is not
necessarily the case. For example, the relative performance of the
FLASH machine for Radix improves with 64KB caches, while that
for FFT, Ocean and MP3D remains about the same. The reason is
that the distribution of misses now is dramatically different than
the distribution when the working sets fit in the cache. As shown in
Table 4.2, in most cases many more misses are satisfied locally, a
case for which the latency difference between FLASH and the
ideal machine is small. Applications that require high local mem-
ory bandwidth thus perform only marginally worse on FLASH
than on the ideal machine.

In most cases, the performance differences between FLASH
and the ideal machine can still be attributed entirely to differences
in latency, by using the CRMT-based calculation in Section 4.1.

gram containing two source files. The “make” runs the passes of
the C compiler on the sources and links the object files into an exe-
cutable. This workload was chosen because of its high OS activ-
ity—close to 50% of the time is spent in kernel mode. The
workload is particularly stressful for the operating system, making
heavy use of the file system, virtual memory, and process manage-
ment subsystems.

4 FLASH versus the Ideal Machine

We now present the results of our simulations for the seven
applications described above. In Section 4.1 we discuss the results
with 1 MB caches and then, to explore the effects of working sets
larger than the cache size, we show results for 64 KB and 4 KB
cache simulations in Section 4.2. The parallel application experi-
ments are run for 16 processor systems, and the OS workload is
run for 8 processor systems. Initial 64-processor parallel applica-
tion results are discussed in Section 4.5.

4.1 Results with 1 MB Caches

Figure 4.1 shows the execution time difference between
FLASH and the ideal machine for each application with 1 MB
caches. The number at the top of each bar indicates the total appli-
cation execution time, normalized so that the FLASH execution
time is 100. The smaller numbers alongside the execution time
bars indicate the height of the bar for that component of the execu-
tion time. Execution time is allocated to five categories: processor
busy time (Busy), contention for the cache (Cont), read stall time
(Read), write stall time (Write), and time spent waiting for syn-
chronization (Sync).

Table 4.1 summarizes the processor cache miss rates, read miss
distributions, and average main memory and PP occupancies for
these experiments. The contentionless read miss time (CRMT) is
calculated by multiplying the latencies in Table 3.3 by the distribu-
tion in Table 4.1. With the exception of MP3D, the miss rates for
all of the parallel applications were very low (less than 1%). While
these miss rates are small, they are representative of optimized par-
allel applications that make efficient use of FLASH’s 128-byte
cache lines, and whose working sets fit in the cache. Because the
applications generate few cache misses, the occupancy of the pro-
tocol processor does not impact performance. In fact, the processor
utilization is high enough that the 35% average difference in
CRMT results in only 2% to 10% difference in overall execution
time. MP3D, which is our communication stress test, has a much
higher miss rate and spends most of its time in the memory system.
Particularly because most of the misses are dirty in a remote cache,
the execution time of MP3D is 25% larger on FLASH than on the

Table 3.5. Applications and Problem Sizes

Application Representative Of Problem Size

Barnes Hierarchical N-body codes 8192 particles, θ=1.0

FFT Transform methods, high-radix 64K complex points, radix √N

LU Blocked dense linear algebra 512-by-512 matrix, 16-by-16 blocks

MP3D High-communication unstructured accesses 50,000 particles

Ocean Regular-grid iterative codes 258-by-258 grids, 25 grids

OS Multiprogramming environments 8 “makes” of a 2809-line C program

Radix High-performance parallel sorting 256K integer keys, radix=256

7

Figure 4.1. Execution times for FLASH and the ideal machine, 1 MB caches.

a. Unlike the other simulations, the OS workload includes the effects of instruction cache misses from both the
application and the operating system. The instruction cache miss rate was 0.025% and the data cache miss rate
was 0.325%.

Table 4.1. Read Miss Distributions and Contentionless Read Miss Time (CRMT) in 10 ns Cycles, 1 MB Caches

Barnes FFT LU MP3D Ocean OS Radix

Miss Rate 0.06% 0.64% 0.05% 6.00% 0.91% 0.09%a 0.78%

Local Clean 2.4% 20.1% 1.0% 0.4% 51.7% 20.0% 2.6%

Local Dirty Remote 3.7% 0.0% 0.0% 5.9% 0.0% 2.7% 76.0%

Remote Clean 38.7% 17.7% 67.1% 3.8% 10.5% 58.6% 16.6%

Remote Dirty at Home 3.6% 62.1% 31.9% 5.9% 37.8% 2.6% 2.2%

Remote Dirty Remote 52.6% 0.1% 0.0% 84.0% 0.0% 16.1% 2.6%

FLASH CRMT 153 115 121 182 80 109 136

Ideal CRMT 114 83 94 130 60 86 98

Avg. Mem Occupancy 4.2% 8.2% 0.8% 7.0% 13.0% 9.9% 8.7%

Avg. PP Occupancy 5.4% 14.3% 1.7% 36.2% 17.7% 21.0% 22.8%

Table 4.2. Read Miss Distributions and Contentionless Read Miss Times (CRMT) in 10 ns Cycles, Smaller Caches

Barnes FFT MP3D Ocean Radix

64 KB 4 KB 64 KB 4 KB 64 KB 16 KB 64 KB 4 KB 64 KB

Miss Rate 0.6% 8.7% 1.1% 7.5% 7.1% 11.4% 2.5% 10.0% 4.2%

Local Clean 7.0% 64.7% 42.7% 3.8% 1.4% 95.6% 88.6% 91.3% 80.1%

Local Dirty Remote 0.1% 0.0% 0.0% 2.8% 4.7% 0.0% 0.0% 0.0% 5.9%

Remote Clean 91.1% 35.3% 45.1% 50.2% 20.6% 4.0% 7.3% 8.2% 11.9%

Remote Dirty at Home 0.1% 0.0% 12.2% 2.8% 4.7% 0.4% 4.1% 0.1% 0.8%

Remote Dirty Remote 1.7% 0.0% 0.0% 40.4% 68.6% 0.0% 0.0% 0.4% 1.3%

FLASH CRMT 107 57 79 142 168 31 38 35 47

Ideal CRMT 88 48 64 108 122 27 32 30 39

Avg. Memory Occupancy 9.4% 32.6% 10.6% 8.8% 7.6% 28.0% 20.7% 33.5% 29.0%

Avg. PP Occupancy 23.0% 36.5% 15.2% 32.0% 35.6% 29.8% 22.1% 35.1% 30.6%

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Sync
 7.0 7.7

 1.1

 0.9
22.2 21.8

 4.9

 2.4

13.4

10.8

 4.7

 3.3

12.2

 7.8

 1.6

 0.6

 1.1
 0.7

 1.3

 0.9 3.0
 2.0

 7.8 6.0
26.5

20.0
 4.6 3.6

85.9

62.3

20.8 16.1

25.5
18.1

26.2 20.7

 1.2 1.4

 3.2 4.2 0.7 0.9

 3.2 3.8

 6.6 7.8
 2.8 3.2

11.2 12.7

84.0 83.0

67.5 67.4
72.5 71.9

 5.9 5.9

58.1 57.6
65.8 64.3

47.5 47.5

100 98.2 100
93.2

100 98.1 100

74.5

100
93.0

100

89.8

100

90.7

FLASH Ideal
Barnes

FLASH Ideal
FFT

FLASH Ideal
LU

FLASH Ideal
MP3D

FLASH Ideal
Ocean

FLASH Ideal
OS

FLASH Ideal
Radix

Write
Read
Cont
Busy

8

For Barnes and Ocean2 at the smallest cache size, however, PP
occupancy begins to impact performance as well. While in these
cases the occupancy-induced performance loss is small (less than
2%), there are other situations in which PP occupancy can have a
more substantial effect, as described in the next section.

4.3 Effects of PP Occupancy

Applications which are less optimized can have higher PP
occupancies than we have seen so far, particularly in the presence
of hot-spotting. However, high PP occupancy in itself does not
cause poor FLASH performance relative to the ideal machine.
Poor relative performance requires the simultaneous occurrence of
high PP occupancy and low memory occupancy at a node. When
memory occupancy is high, the latency of the protocol processor
can be hidden behind the memory access, and PP occupancy does
not substantially impact performance. To demonstrate this, we ran

2. Because of cache conflict problems with a 4 KB cache at 128-byte lines,
we used a 16 KB cache for our Ocean simulations.

Figure 4.2. Execution times for FLASH and the ideal machine, 64 KB caches.

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Sync
10.8

11.6

 1.9

 1.4
 4.1

 1.8

31.8

27.7

11.4
10.3

 1.5

 1.1

 1.4
 1.3 50.5 49.6

36.9
27.0

27.0
21.1

87.1

63.0

26.3 21.7

11.5 9.7

 3.8 4.0

 6.2 6.8

 3.4 3.9

11.1 11.9

 6.1 6.548.5 48.5

63.5 62.8

 5.4 5.4

29.5 29.5
20.5 20.6

100

91.1

100
93.3

100

74.1

100

92.0

100
96.6

FLASH Ideal
Barnes

FLASH Ideal
FFT

FLASH Ideal
MP3D

FLASH Ideal
Ocean

FLASH Ideal
Radix

Write
Read
Cont
Busy

Figure 4.3. Execution times for FLASH and the ideal machine, 4 KB caches (16 KB for Ocean)

|0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Sync 2.1

 0.8

 4.2

 2.5

26.8

24.5

 9.6

 6.9
11.0

 8.8

 2.2

 2.1
49.7

48.0
45.2

35.0

85.8

64.2

42.5
33.1

24.0 20.5

16.8 17.9

 3.9 4.2

14.7 15.1

 6.0 6.524.9 24.7

 6.0 6.0
13.8 13.8 10.8 10.8

100

87.3

100

77.0

100

88.4

100
92.6

FLASH Ideal
FFT

FLASH Ideal
MP3D

FLASH Ideal
Ocean

FLASH Ideal
Radix

Write
Read
Cont
Busy

a version of FFT with 4 KB caches that allocated all of its memory
from node zero. The PP occupancy of that node was 81.6%, but the
difference in execution time between FLASH and the ideal
machine was only 2.6% because the memory occupancy of node
zero was also high at 67.7%.

An application in which protocol processor occupancy is much
greater than the main memory occupancy is the original port of
IRIX we used for our OS workload. This version corresponds to
taking IRIX as written for a bus-based machine and running it on a
NUMA machine. In particular, it does not allocate pages round-
robin among all the memories on the machine, but rather fills the
memory of one node before going on to the next node. The maxi-
mum PP occupancy in this case was 81% while the maximum
memory occupancy was only 33%. This led to a 29% performance
degradation for FLASH relative to the ideal machine. Similar
results are observed in less optimized versions of some parallel
applications, which generate substantial hot-spotting on data that
are dirty in a node’s cache.

Note that the ideal machine is particularly optimistic with
respect to occupancy. For example, to issue five invalidations the
PP would be occupied for 5*15 or 75 cycles, while the ideal

9

5 MAGIC Architectural Evaluation

As noted in Section 2, MAGIC contains a number of architec-
tural features to accelerate protocol processing. In this section we
study the effectiveness of three of these: the speculative memory
initiation provision in the inbox, the performance of the MAGIC
caches, and the PP architecture extensions.

5.1 Speculative Memory Initiation

To achieve low latency for local memory operations, the mem-
ory access must be started as quickly as possible. Therefore, for
some types of messages, the inbox jump table indicates that a spec-
ulative memory operation should be issued even before the PP pro-
cesses the message. Unfortunately, some of these speculative
operations will be useless because the most up-to-date copy of the
data may be held in a processor’s cache rather than in the node’s
local memory. Although a useless memory operation does not
delay processing of the associated message, it does occupy the
memory system for the duration of the access, potentially delaying
the initiation of subsequent memory accesses.

To assess the performance impact of useless speculative reads,
we ran the set of six parallel applications and our multiprogram-
ming workload with the jump table programmed normally and
then with all speculative memory operations disabled. In the latter
case, the PP is responsible for initiating the memory access after
reading the directory state, and there are no useless memory reads.
Table 5.1 shows the fraction of useless speculative reads as well as
the overall performance degradation without speculation for each
application. Speculation is always beneficial, indicating that the
delay in issuing the read outweighs any potential disadvantage of
useless speculative reads unnecessarily loading the memory sys-
tem. A second, subtler, point is that the length of the handlers that
cause speculative reads are always about equal to or longer than
the memory access time. Consequently, even if a speculative mem-
ory access is issued in error, it will finish by the time the next han-
dler runs. With small caches the performance advantages of
speculation increase because more cache misses are satisfied
locally, and a larger portion of the application’s execution time is
spent in the memory system. Thus applications that require large
local memory bandwidth benefit substantially from speculative
reads.

machine would have no occupancy. A real hardwired implementa-
tion would also incur occupancy-related contention, so the degra-
dation we observe relative to the ideal machine is simply an upper
bound. Finally, the results for our workloads show that the occu-
pancy of the PP is comparable to the read miss stall time, indicat-
ing that it would be difficult to perform protocol processing on the
main processor without adversely affecting performance.

4.4 Summary of Results

Overall, we find that for optimized parallel applications the per-
formance impact of flexibility in FLASH varies between 2% and
12% over the ideal machine for a range of important computations.
In most cases, the performance discrepancies can be traced entirely
to differences in latency between the two machines, and PP occu-
pancy does not have a substantial effect. Thus, the performance
difference is larger for applications that have many remote misses,
and generally smaller when most misses are local and the protocol
processing latency can be hidden under the memory access time.
The differences become larger when PP occupancy becomes a bot-
tleneck, which we have observed for less tuned applications that
exhibit substantial hot-spotting. Finally, we note that while the
flexibility of the PP can lead to occupancy-related problems due to
hot-spotting, the same flexibility can be used to dynamically detect
hot-spotting situations and provide support for techniques such as
automatic page remapping or migration.

4.5 Scaling to Larger Machines

We have performed some initial experiments with 64-processor
configurations for the parallel applications. To stress communica-
tion in these initial experiments, we used the same problem sizes
as in the 16-processor runs, so the problem sizes were significantly
smaller than might be considered realistic for 64-processor sys-
tems. The use of smaller problems drives up the communication to
computation ratio and the remote miss rates, and thus reduces the
relative performance of FLASH (for example, performance differ-
ences were 17% for FFT and 12% for Ocean, although the differ-
ence for LU remained small at only 0.7%). How the relative
performance would scale in practice depends on how the problem
sizes are scaled—the more the problem size is scaled, the smaller
the relative performance difference between FLASH and the ideal
machine. For example, scaling the data set size proportionally for
the FFT application resulted in only a 12% performance degrada-
tion.

a. As mentioned in Section 4.2, we use a 16 KB cache for ocean instead of a 4 KB cache.

Table 5.1. Impact of Speculative Memory Operations

1 MB Cache 4 KB Cachea

Application
Useless reads,
w/ speculation

Execution time
increase,

 w/o speculation
Useless reads,
w/ speculation

Execution time
increase,

 w/o speculation

Barnes 54.0% 12.7% N/A N/A

FFT 43.5% 0.9% 5.9% 6.8%

LU 33.5% 0.2% N/A N/A

MP3D 67.8% 11.8% 37.7% 11.4%

Ocean 20.0% 2.2% 1.2% 21.0%

OS 21.9% 2.9% N/A N/A

Radix 59.9% 4.8% 18.0% 17.9%

10

5.2 MAGIC Data Cache

As mentioned earlier, the protocol processor uses the on-chip
MAGIC data cache (MDC) to reduce the average cost of accessing
protocol data structures from main memory. Clearly the perfor-
mance of the overall machine depends on the hit rate in this cache.

The MDC is 64 KB in size, 2-way set associative, and has 128-
byte lines. Since in our initial protocol each directory header (see
Section 3.3) is eight bytes, each MDC line can hold 16 directory
headers, each of which contains the directory information for one
128-byte memory line. Thus, each MDC line contains the directory
headers for 16 * 128 = 2 KB of contiguous data. The entire MDC
has 512 lines, so the MDC as a whole can hold the directory infor-
mation for up to 1 MB of data. With this size cache, the MDC miss
rates for our parallel application set were too small to affect perfor-
mance significantly (0.84% overall miss rate, 1.43% read miss
rate).

To better understand the effect MDC misses could have on the
overall machine, we looked for realistic applications that would
stress the MDC. Finding these applications was difficult because
such a parallel application must have both a pattern of cache
misses that stress the MDC, and a very large data set, since the
MDC at a node contains protocol information only for data that are
allocated in that node’s local memory, and therefore about 1/P of
the total data set. An application that streams through a per-proces-
sor data set of more than 1 MB with unit stride is not sufficient to
stress the MDC. This application will miss in the processor cache
in 1 out of every 16 processor references (128-byte lines store 16
8-byte values), and the MDC will miss 1 out of every 16 processor
cache misses (since an MDC line maps 16 contiguous processor
cache lines). But adding one MDC cache miss penalty to every 256
processor references will have only a small effect on total execu-
tion time.

A more pathological situation with regular access patterns is
one in which a processor traverses a large local data set with stride
greater than 2 KB. However, few well-written codes for a non-vec-
tor machine will do this. A naive matrix transpose would, but in
reality a matrix transpose would be blocked to get reuse of long
cache lines in the processor cache. Even if the transpose is not
blocked, it will require the transpose of a matrix with at least 512
rows per processor (in the two-dimensional case) to generate a sig-
nificant number of MDC misses.

Applications with irregular access patterns also must be consid-
ered. Sparse matrix computations are an important example. How-
ever, direct sparse matrix solvers would also be blocked and would
not cause many MDC misses. Iterative sparse problems are essen-
tially matrix-vector product computations in which the matrix is
traversed with unit stride, and the vector size per processor is too
small to trouble the MDC.

a. Dynamic dual-issue efficiency is the ratio of the dynamic count of non-NOP instructions executed to the total number of dual-issue instruc-
tion pairs executed. Perfect use of the PP’s dual-issue capability would yield a dynamic dual-issue efficiency of 2.

Table 5.2. PP Architecture Evaluation

Parameter 1 MB Caches 64 KB Caches 4 KB Caches

Static code size of fully-scheduled handlers (with NOPs) 14.8 KB

Dynamic dual-issue efficiencya 1.53 1.54 1.43

Special instruction use (dynamic fraction of ALU and branch
instructions that are bitfield or branch-on-bit)

38% 37% 43%

Mean number of instruction pairs executed per handler invocation 13.5 13.1 10.8

Mean number of handler invocations per processor cache miss 3.69 3.87 3.51

One interesting application that can potentially stress the MDC
is the radix sort program. When the radix is large enough (greater
than the number of lines in the MDC), the application generates
fairly random write references with large enough stride to use the
MDC very inefficiently. On a parallel machine, the array being
written is distributed among the processors, so that it takes a large
problem size to stress the MDC on a machine with more than a few
processors. To evaluate the ability of radix sort to stress the MDC,
we increased the data set size to 16 MB, used a radix of 2048, and
used only one processor. Although the processor cache miss rate
was 1.4%, the overall MDC miss rate was 14.9%, with a 30%
MDC read miss rate. (The MDC write miss rate is approximately
zero since almost all directory operations involve a read-modify-
write on the directory state.) As a result, FLASH ran 14% slower
than a uniprocessor with no MDC miss penalty.

Another application that can stress the MDC is the operating
system. Our OS workload had an overall MDC miss rate of 4.1%,
and an MDC read miss rate of 8.7%. One node’s PP had an MDC
read miss rate as high as 13%. Writebacks and replacement hints
cause most of the MDC misses because conflicting lines in the pro-
cessor cache can also conflict in the smaller MDC. MDC misses
and their associated writebacks accounted for 34% of the total
memory operations, and were responsible for 2.7% of the 10% dif-
ference in execution time between FLASH and the ideal machine
shown in Figure 4.1. These MDC misses increase PP occupancy
and hence the latencies of subsequent memory requests.

Although the MDC can affect performance in some situations,
our results and the above arguments show that it is not likely to be
a performance bottleneck for most applications, particularly on
moderate to large-scale machines. Problems can arise when large
data sets are run on small-scale machines—but even then only for
applications with certain types of irregular, high-stride access pat-
terns—or when protocol operations generate a lot of MDC misses.
In these cases, one can always exploit the flexibility of MAGIC to
implement a coherency protocol that uses the MDC more effi-
ciently.

5.3 PP Architecture Extensions

To speed up common coherence protocol operations, we have
extended the PP architecture beyond that of a standard embedded
RISC CPU core by adding bitfield insert/extract and branch on bit
set/clear instructions, and by making the PP a statically scheduled,
dual-issue processor. In Table 5.2 we summarize some statistics
which allow us to gauge the utility of the PP architecture exten-
sions. The data in this table are based on our implementation of the
full cache-coherence protocol, including all corner cases, deadlock
avoidance checks, and other complications. As the table shows, the
total size of the cache-coherence code sequences is about 15 KB,

11

well below the MAGIC instruction cache size of 32 KB. As a
result, the only MAGIC instruction cache misses in our simula-
tions are cold misses. In addition, the dynamic dual-issue effi-
ciency and special instruction use are both high, indicating that the
typical code sequences make good use of the PP extensions.

The special instructions fall into four general categories: find
first set bit; branch on bit set or clear; general ALU field immediate
instructions, which specify an immediate operand as a string of
consecutive ones or zeros; and field insertion, which overwrites a
field in the target with the corresponding field from the source.
Table 5.3 shows the number of DLX instructions that would be
required to replace each type of special instruction as well as the
time required for the DLX substitution code (as opposed to one
cycle for each special instruction, not counting branch delay slots).
In general, the substitution code consists of sequentially dependent
instructions.

To quantify the effect that the extensions have on overall per-
formance, we modified our compiler so that it generated code that
did not use any of the special instructions. We scheduled that code
for a single-issue PP, and ran our six parallel applications using
that version of the protocol. The average performance degradation
with the non-optimized PP was found to be 40%, and the maxi-
mum performance degradation was 137% (for MP3D). Clearly, an
optimized PP is essential to minimizing the performance cost of
flexibility.

6 Summary and Conclusions

A flexible node controller offers many advantages: easier
debugging, support for a variety of protocols, performance moni-
toring, and simpler design. To obtain its flexibility, the Stanford
FLASH Multiprocessor employs MAGIC, a flexible node control-
ler with a general-purpose processor core. But flexibility comes at
a cost in performance relative to a hardwired implementation. The
performance loss stems from two sources: the latency that the flex-
ible node controller adds to memory operations, and the contention
resulting from the increased occupancy of the node controller
itself. We have examined the performance costs of flexibility in
FLASH by comparing it to an idealized hardwired implementation
in which protocol operations take zero time to process.

For a range of important, optimized parallel applications, the
performance loss can be attributed almost entirely to the additional
latency of the flexible node controller. The latency disadvantage
for FLASH is smaller for local misses, where the overhead of the
flexible controller can be hidden behind the memory access time,
and larger for remote misses where it cannot. Thus, the perfor-
mance loss is higher for those applications with high communica-
tion to computation ratios, and lower for those applications whose
main requirement is local memory bandwidth. Overall, we find
that the performance impact of flexibility is between 2% -12% for

Table 5.3. Comparison of Special Instructions to DLX

Instr Type DLX Substitution Code Static Size DLX Substitution Code Latency

Find first set bit 6 instructions (optimized for code size)

27 instructions (optimized for speed)

2 cycles + 4 cycles per bit checked

7-21 cycles (depending on bit position)

Branch on bit 2 or 4 instructions (depending on bit position) 2 or 4 cycles

ALU field
immediate

1-5 instructions

OR 2 instructions if the immediate is loaded
from the data section

1-5 cycles

OR 3 cycles (load, load delay, op) plus average
cache miss penalty

Insert field Equivalent to two field immediates (as above) followed by an “or”

a range of important computations, including an operating system
and multiprogramming workload.

The occupancy of the flexible controller is not a performance
liability for our optimized parallel applications, but it can become
a problem for less optimized applications that exhibit significant
hot-spotting. However, we find that the occupancy of the controller
is a performance bottleneck only when it is high and the main
memory occupancy on the node is simultaneously low. Our occu-
pancy results (even for the optimized parallel applications) indi-
cate that using the main processor to process protocol operations
may result in significant performance loss, unless the additional
main processor occupancy can be hidden under the memory access
time.

While our results indicate that a machine with a flexible node
controller can have comparable performance to a machine with a
hardwired controller, we found that the optimizations we made to
MAGIC to make protocol processing efficient were crucial in
keeping the performance loss small. These optimizations include
separating the control and data transfer logic, providing support for
speculative memory operations, extending the PP instruction set
architecture and making it a dual-issue processor, and extensive
pipelining between all units on the chip. We have shown that turn-
ing off these optimizations has a large adverse effect on overall
performance.

Although the flexibility of FLASH results in some performance
loss, it also provides a mechanism to detect and alleviate perfor-
mance problems. By taking advantage of flexibility to optimize the
protocol and directory structures, we believe FLASH can be com-
petitive with any real hardwired design. In the future, we would
like to perform a detailed comparison of FLASH with a real hard-
wired implementation. However, this requires either the availabil-
ity of an actual hardwired machine or a very detailed paper design
that accounts for deadlock issues and other practical concerns.

Acknowledgments

We would like to acknowledge the cooperation of Intel Corpo-
ration, Supercomputer Systems Division. This work was supported
by ARPA contract N00039-91-C-0138. Mark Heinrich and Joel
Baxter are supported by National Science Foundation Fellowships.
John Heinlein is supported by an Air Force Laboratory Graduate
Fellowship. Kourosh Gharachorloo is supported by Digital Equip-
ment Corporation’s Western Research Laboratory. Mendel Rosen-
blum is supported by an National Science Foundation Young
Investigator Award.

12

References

[ACD+91] Anant Agarwal et al. The MIT Alewife Machine: A
Large-Scale Distributed-Memory Multiprocessor.
MIT/LCS Memo TM-454, Massachusetts Institute
of Technology, 1991.

[DEK+92] Todd A. Dutton et al. The Design of the DEC 3000
AXP Systems, Two High-performance Worksta-
tions. Digital Technical Journal, volume 4, number
4, pages 66-81. Digital Equipment Corporation,
Maynard, MA, 1992.

[Golds93] Stephen Goldschmidt. Simulation of Multiproces-
sors: Accuracy and Performance. Ph.D. Thesis,
Stanford University, June 1993.

[HGD+94] John Heinlein et al. Integration of Message Passing
and Shared Memory in the Stanford FLASH Multi-
processor. In Proceedings of the 6th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, San Jose,
CA, October 1994.

[HP90] John Hennessy and David Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, San Mateo, CA, 1990.

[Intel94] Edmund A. Reese et al. A Phase-Tolerant 3.8GB/s
Data-Communication Router for a Multiprocessor
Supercomputer Backplane. In Proceedings of the
1994 International Solid-State Circuits Conference,
pages 296-297, San Francisco, CA, February 1994.

[KOH+94] Jeffrey Kuskin et al. The Stanford FLASH Multi-
processor. In Proceedings of the 21st International
Symposium on Computer Architecture, pages 302-
313, Chicago, IL, April 1994.

[NPA92] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and
Arvind. *T: A Multithreaded Massively Parallel
Architecture. In Proceedings of the 19th Interna-
tional Symposium on Computer Architecture, pages
156-167, Gold Coast, Australia, May 1992.

[NWD93] Michael D. Noakes, Deborah A. Wallach, and Will-
iam J. Dally. The J-Machine Multicomputer: An
Architectural Evaluation. In Proceedings of the
20th International Symposium on Computer Archi-
tecture, pages 224-35, San Diego, CA, May 1993.

[RLW94] Steven K. Reinhardt, James R. Larus, and David A.
Wood. Tempest and Typhoon: User-Level Shared
Memory. In Proceedings of the 21st International
Symposium on Computer Architecture, pages 325-
336, Chicago, IL, April 1994.

[RSG93] Edward Rothberg, Jaswinder Pal Singh, and Anoop
Gupta. Working Sets, Cache Sizes, and Node Gran-
ularity for Large-Scale Multiprocessors. In Pro-
ceedings of the 20th International Symposium on
Computer Architecture, pages 14-25, San Diego,
CA, May 1993.

[RV94] Mendel Rosenblum and Mani Varadarajan. SimOS:
A Fast Operating System Simulation Environment.
Technical Report CSL-TR-94-631, Stanford Uni-
versity, July 1994.

[Simoni92] Richard Simoni. Cache Coherence Directories for
Scalable Multiprocessors. Ph.D. Thesis, Technical
Report CSL-TR-93-556, Stanford University,
November 1992.

[Smith92] Michael David Smith. Support for Speculative Exe-
cution in High-Performance Processors. Ph.D. The-
sis, Technical Report CSL-TR-93-556, Stanford
University, November 1992.

[Stall93] Richard Stallman. Using and Porting GNU CC.
Free Software Foundation, Cambridge, MA, June
1993.

[SWG92] Jaswinder Pal Singh, Wolf-Dietrich Weber, and
Anoop Gupta. SPLASH: Stanford Parallel Applica-
tions for Shared-Memory. Computer Architecture
News, 20(1):5-44, March 1992.

[WSH94] Steven Cameron Woo, Jaswinder Pal Singh, and
John L. Hennessy. The Performance Advantages of
Integrating Block Data Transfer in Cache-Coherent
Multiprocessors. In Proceedings of the 6th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, San
Jose, CA, October 1994.

