
Abstract
Given the limitations of bus-based multiprocessors, CC-NUMA

is the scalable architecture of choice for shared-memory machines.
The most important characteristic of the CC-NUMA architecture
is that the latency to access data on a remote node is considerably
larger than the latency to access local memory. On such machines,
good data locality can reduce memory stall time and is therefore a
critical factor in application performance.

In this paper we study the various options available to system
designers to transparently decrease the fraction of data misses
serviced remotely. This work is done in the context of the Stanford
FLASH multiprocessor. FLASH is unique in that each node has a
single pool of DRAM that can be used in a variety of ways by the
programmable memory controller. We use the programmability of
FLASH to explore different options for cache-coherence and data-
locality in compute-server workloads. First, we consider two
protocols for providing base cache-coherence, one with
centralized directory information (dynamic pointer allocation) and
another with distributed directory information (SCI). While
several commercial systems are based on SCI, we find that a
centralized scheme has superior performance. Next, we consider
different hardware and software techniques that use some or all of
the local memory in a node to improve data locality. Finally, we
propose a hybrid scheme that combines hardware and software
techniques. These schemes work on the same base platform with
both user and kernel references from the workloads. The paper
thus offers a realistic and fair comparison of replication/migration
techniques that has not previously been feasible.

1    Introduction
Shared-memory multiprocessors are increasingly used as

compute servers. These systems enable efficient usage of
computing resources through the aggregation and tight coupling of
CPU, memory and I/O. As processors get faster, the shared bus
becomes a bandwidth bottleneck in bus-based multiprocessors.
CC-NUMA (Cache-Coherent with Non-Uniform Memory Access
time) machines remove this architectural limitation and provide a
scalable shared-memory architecture. A typical design has a
number of nodes, each node consisting of one or more processors
and a portion of the machine’s global main memory. The nodes are
connected using scalable interconnect technology, and cache-
coherence is maintained using a directory-based scheme.

Examples include commercial machines such as Sequent
STiNG[18], HP Exemplar[4], Data General NUMALiiNE[6], and
SGI Origin 2000[16], and academic prototypes such as
Alewife[1], DASH[17], and FLASH[15].

The most important attribute of the CC-NUMA architecture is
that the latency to access data on a remote node is considerably
larger than the latency to access local memory. The ratio of remote
to local access times can be as small as 2 (or 3) to 1 for the SGI
Origin or as high as 8 to 1 for the Sequent STiNG. On such
machines, good data locality can reduce memory stall time and is
therefore a critical factor in application performance. However, the
dynamic nature of compute-server workloads makes it difficult to
ensure good data locality. For example, static data-placement
schemes do not work because the operating system moves
processes between processors to maintain load balance.

In this paper we study the various options available to system
designers to transparently increase data locality for applications.
The work is done in the context of the FLASH machine at
Stanford (Figure 1). FLASH is unique in that each node has a
single pool of DRAM that can be used in a variety of ways by the
programmable memory controller.

We first compare the base cache-coherence protocol in FLASH
(centralized directory information) with the commonly used SCI
protocol (distributed directory information). We then study three
ways in which data locality can be increased. The configurations
we study are listed below:
• Base CC-NUMA: This is the base configuration for FLASH.

A portion of the DRAM holds the directory that is used to
maintain coherence between the processor caches and mem-
ory. Both the dynamic pointer allocation (DynPtr) and scal-
able coherent interface (SCI) protocols provide cache
coherence, but have no inherent mechanisms to increase data
locality.

• CC-NUMA+RAC: As compared to base CC-NUMA, an
additional segment of the DRAM is reserved to implement
tags and data storage for a remote-access cache (RAC). RAC
is thus a main-memory cache and can be made much larger
than the L2 cache of the processors.

• COMA: We make a more fundamental change to the protocol
structure and convert the whole DRAM to a cache (hence the
name Cache-Only Memory Architecture). By treating all of
memory as a cache, COMA allows both migration of the
“home” of data to local DRAM as well as replication of data.
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• CC-NUMA+MigRep: As an enhancement to CC-NUMA the
kernel can perform page-level migration and replication to
increase locality. We modify the cache-miss handlers to use a
small portion of the DRAM to keep per-page-per-node miss
counts that are used by the kernel to make migration and rep-
lication decisions.

There are several unique aspects to this study: (i) Since all of
the schemes are implemented on the same piece of hardware, and
all protocols are complete and working implementations
(including full operating system modifications), this study offers
the first realistic and fair comparison of these protocols; (ii) The
workloads studied include all operating system effects and kernel
references (e.g., earlier COMA studies considered user-mode
references only); (iii) This wide variety of schemes, especially
including kernel-based migration/replication, has never been
pulled together and compared before.

There are two ways in which to interpret the results presented in
this paper. First, the results can act as a guide to the desirability of
implementing each of the individual schemes in the study. Second,
the flexibility of FLASH-like machines in implementing various
protocols allows for choosing a specific scheme to achieve the best
performance for a given workload.

Our comparison of the DynPtr and SCI protocols shows that the
centralized directory information in DynPtr leads to a simpler
design and yields superior performance. For this reason, the rest of
our experiments assume DynPtr as the base CC-NUMA protocol.
Our data-locality results show that the simple RAC scheme can be
implemented with low additional complexity, and is effective in
improving performance (up to 64% faster than base CC-NUMA)
by caching data in part of the local memory. However, the gains
are quite sensitive to the size of the RAC. In particular,
performance can degrade when the RAC is too small to capture the
remote working set of the application, or when most of the misses
are due to coherence. The COMA protocol also improves
execution time (up to 14%) when the working set of the
application is large and capacity misses dominate. However, it is
complex to implement (both in amount of protocol code required
and number of instructions executed by the protocol processor),
and the performance can be significantly worse if coherence
misses are dominant. Both RAC and COMA are quite effective in
increasing locality for both user and kernel references. However,
RAC is always superior to COMA, given our base parameters and
workloads. Kernel-based migration and replication requires the
least changes to the base CC-NUMA protocol, and does quite well
(up to 56% faster than base CC-NUMA) when sharing is coarse-
grain and pages are mostly read-only. We also found that the
kernel-based and RAC schemes complement each other. We
propose a hybrid scheme called MIGRAC: kernel-based
migration/replication handles coarse-grain locality decisions while
the RAC protocol exploits fine-grain locality.

The rest of this paper is organized as follows. Section 2
describes the architecture of the FLASH machine. Section 3
presents a detailed description of the various protocols, and
provides a qualitative analysis of their effectiveness for different
cache-miss types. We describe our experimental environment and
workloads in Section 4. Section 5 presents the performance results
for each of our schemes. In Section 6, we explore the sensitivity of

the different schemes to various parameters such as memory
pressure and protocol processing speed. Section 7 proposes and
evaluates the hybrid MIGRAC scheme. Finally, we discuss related
work and summarize our major results.

2    The FLASH Machine
The Stanford FLASH multiprocessor is a shared memory

machine designed around the MIPS R10000 processor and the
MAGIC memory controller chip. The MAGIC chip consists of a
dual-issue processor (called the protocol processor, or PP), and
some specialized hardware to support common coherence actions
such as sending messages via the network. The cache coherence
protocols are implemented as software routines called handlers
that run on the embedded protocol processor.

Figure 1 is a diagram of the FLASH architecture, showing the
central location of the MAGIC node controller. Figure 2 shows
how we partition each node’s local DRAM for the five protocols
that we study in this paper. The next section provides more details
about each protocol.

FLASH provides flexibility in the choice of cache coherence
protocol without severely compromising performance. Of all the
commercial distributed shared memory (DSM) machines at the
time of this writing, only the SGI Origin 2000 has faster remote
miss latencies than FLASH, and the local latencies of the two
machines are identical. Thus, we present our protocol comparisons
in the context of a machine that is achieving good performance,
and still show that significant performance improvement over base
CC-NUMA is possible by using our locality-enhancing schemes.

3    Protocol Implementations
We begin by describing the two base CC-NUMA protocols

along with the three extensions we consider for improving data-
locality. We then provide a qualitative discussion on how each
scheme responds to different types of cache misses. As we will see
in the results section, the centralized DynPtr scheme is superior to
the distributed SCI scheme. Therefore, the three locality-
enhancing extensions are based on the DynPtr directory data
structures.

Before discussing the protocols, we define some terminology
that will be helpful for qualitative comparison. Each protocol
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FIGURE 1. The FLASH architecture. The MAGIC chip inte-
grates the CPU, memory, I/O, and network interfaces.



differs with respect to the complexity of its handlers, which can
lead to increased time spent in the PP for a given handler. The two
time metrics we use to characterize complexity are PP latency and
PP occupancy. We define PP latency as the time between the PP’s
receipt of a request (from the CPU, I/O, or network) and its
sending of a reply, while PP occupancy is the total time spent
within the PP to complete an operation. Latency and occupancy
differ, for example, if a handler must do some directory
bookkeeping after generation of a reply. High latency and
occupancy typically imply complex protocol transactions, and can
negatively impact performance.

Base CC-NUMA: DynPtr

Our base CC-NUMA is the dynamic pointer allocation
(DynPtr) directory protocol[15][23]. This is the base cache
coherence protocol used for FLASH. This protocol maintains
centralized directory information, with the complete information
for each line available at its corresponding home. Each main
memory line has an associated directory header. This header
contains status bits and a link to a list of node IDs corresponding to
nodes currently caching the line. Because DynPtr is a home-based
protocol, requests for remote data are always first forwarded to the
home for that data. The home node is responsible for either
returning the data to the requestor, if it is clean in its memory, or
locating the data in a processor’s cache, if it is dirty. Most protocol
operations at the home node require access to the directory header.
Depending on the state of the line and the type of request, a
traversal of the linked list of sharers may also be needed.

DynPtr performs replication only at the level of the processor
caches, and at the granularity of a cache line. There is no migration
of data. All of local memory (minus that used for protocol code,
directory headers and the directory pointer store) is available for
allocation by the OS because DynPtr does not cache any user or
kernel data in local memory. No intervention by the OS is required
in protocol operations.
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In terms of implementation, DynPtr is the simplest of the
protocols we will describe, and is the baseline against which we
compare the other protocols. As shown in Table 1, the protocol
code consists of 65 handlers totalling 8411 lines of code.

Base CC-NUMA: SCI

Our other base CC-NUMA protocol is the Scalable Coherent
Interface (SCI) protocol, also known as IEEE Standard 1596-
1992[22]. The main idea behind SCI is to keep a doubly linked list
of sharers which, unlike the dynamic pointer allocation protocol, is
distributed across the nodes of the machine. To traverse the
sharing list, the protocol must follow the pointer in the directory
entry through the network until it arrives at the indicated
processor. Each processor must maintain a “duplicate set of tags”
data structure that mimics the current state of its processor cache.
The duplicate tags structure consists of a backward pointer, the
current cache state, and a forward pointer to the next processor in
the list. The official SCI specification has this data structure
implemented directly in the secondary cache of the main
processor, and thus SCI is sometimes referred to as a cache-based
protocol. In practice, since the secondary cache is under tight
control of the main microprocessor and needs to remain small and
fast for uniprocessor nodes, most SCI-based architectures
implement this data structure as a duplicate set of cache tags in the
main memory system of the multiprocessor.1

The distributed nature of the SCI protocol has two main
advantages. First, it reduces the size of the directory on each node.
In SCI, a directory entry contains only a pointer to the first node in
the sharing list, resulting in directory entries that are 1/4 the size of

1. Actually most implementations include this tag functionality as part of a
larger node cache similar to a RAC. Because we want to study the issues
related to centralized versus distributed directory information in isolation,
our SCI implementation does not include a RAC.



those in the DynPtr protocol. Since the duplicate tags structure
adds only a small amount of overhead per node, SCI has the least
protocol memory overhead of any of the protocols in this study.
Second, the distributed nature of the SCI protocol can help reduce
hot-spotting in the memory system. In DynPtr, unsuccessful
attempts to retrieve a highly contended cache block need to be
repeatedly reissued to the same home memory module. In SCI,
however, the home node is asked only once, at which point the
requesting node is made the head of the distributed sharing list.
The home node negatively acknowledges the requesting node, and
the requesting node retries by sending all subsequent requests for
that block to the old head of the list. Many nodes in turn may be in
the same situation. Thus the SCI protocol forms an orderly queue
for the contended block, distributing the requests evenly
throughout the machine. In high-contention situations, such as
access to synchronization variables and particularly at larger
machine sizes, this even distribution of requests often results in
improved application execution time.

The distributed nature of SCI does come at a cost: the state
transitions of the protocol are quite complex. This complexity
arises from the non-atomicity of most protocol actions and the fact
that the protocol has to keep state at the home node as well as
duplicate tag information at the requesting nodes to implement the
sharing list. Table 1 lists the number of handlers and lines of code
in our SCI implementation. Because it is a distributed directory
scheme, SCI has 28% more handlers and many more race
conditions than the centralized DynPtr protocol. Furthermore,
managing the doubly-linked list (especially on cache
replacements) results in more handlers invoked per miss than
DynPtr, even in the most common protocol cases. Nevertheless,
because it is an IEEE standard and applications can potentially
benefit from its distributed nature, various derivatives of the SCI
protocol are used in several machines including the Sequent
NUMA-Q [18], the Data General NUMALiiNE[6], and the HP
Exemplar[4].

CC-NUMA plus Remote Access Cache (RAC)

In the Remote Access Cache (RAC) protocol, while most of
local DRAM on each node is treated exactly as in DynPtr or SCI, a
portion of DRAM is treated as a cache for remotely-allocated data.
Thus, remote data potentially resides not just in the processor
caches, but also in this specially-allocated portion of local memory
(providing a tertiary cache). The concept of a RAC itself is not
new. For example, it was used on the DASH machine, although it
was motivated by very different considerations[17].

The RAC is a relatively simple extension to DynPtr. The home
in DynPtr already maintains directory entries for every memory
line owned by that node. The RAC portion of memory will only
store lines that are not owned by that node, so the home need not
maintain directory information on them. Instead, these unused
directory entries can be used to store tag information for the RAC.
A simple direct-mapped RAC can be implemented by storing one
tag per memory line.

Remote read requests emitted by the processor are first checked
against the contents of the RAC, and if there is a tag match, the
request is satisfied without requiring the request to be sent to the
home node. Thus, the RAC protocol can reduce miss latency and

save network bandwidth and protocol processor occupancy at the
home. A miss that might have cost 100 cycles to go to the home
and return would only cost the local miss penalty of 19 cycles in
RAC. On the other hand, the tag check at the requestor increases
the latency of remote requests on a RAC miss relative to DynPtr:
in DynPtr, a remote request is automatically forwarded to the
home node, consuming 3 PP cycles, while a RAC tag check and
miss costs 16 PP cycles. In addition, data replies must update RAC
state and write the appropriate data to the RAC, thus increasing
miss latency and PP occupancy. A write reply sends dirty data to
the cache and modifies the state in the RAC to indicate dirty data is
in the processor. Because the RAC can potentially hold dirty
copies of data, the protocol generates a writeback message when
the data is evicted from the RAC (similar to a processor cache). As
indicated in Table 1, the static complexity of the RAC
implementation is essentially the same as that of the DynPtr
implementation. RAC has 66 handlers and 8951 lines of code as
compared to 65 handlers and 8411 lines of code in DynPtr.

COMA-F

COMA[14] takes a completely different view of memory from
DynPtr. COMA treats all of a node’s memory as a cache, or
attraction memory (AM). Any data, locally or remotely allocated,
can reside in any memory. The main benefits of a COMA come
from improving locality by dynamically migrating and replicating
data into the local memory of nodes at cache-line granularity.
Some extra memory may optionally be reserved for COMA to
provide room for replication. While the processor cache is
generally too small to take advantage of long-term temporal
locality, the local memory is expected to be large enough to
capture this. However, these benefits come at the cost of
implementation complexity. COMA has increased latency at the
requestor on accesses that miss in the AM, as well as extra
overhead for state maintenance when data is returned. In addition,
because all of memory is a cache, care must be taken on all
requests to avoid losing the last copy of a datum.

Our COMA protocol is an implementation of COMA-F[14].
COMA-F involves significant changes to the DynPtr protocol,
even though it uses the same underlying directory structure. The
complexity is inherent in any real COMA-F protocol, not just our
implementation on FLASH. While COMA-F was proposed in
[14], our paper reports on the first real implementation of the
protocol. Therefore, we will describe our implementation of the
protocol in some detail.

TABLE 1. Handler Code characteristics. For each protocol,
we list the number of lines of source code and the number of
handlers. We omit MigRep because it is identical to DynPtr
except for the cache counting code, which adds little overhead
to DynPtr.

DynPtr SCI RAC COMA

# lines 8411 8873 8951 15432

# handlers 65 83 66 87



COMA uses memory as an extension of the cache hierarchy.
Therefore, COMA must store tags for each line in memory. In
practice, tags are easily implemented in FLASH. Each node in
DynPtr already stores directory information for every line on that
node, and in COMA we implement similar directory information
to store tags (the directory header structure for DynPtr in FLASH
has enough unused bits to accommodate these tags). Assuming a
direct-mapped AM, a carefully tuned tag match on a read miss
request from the processor can be accomplished with zero
overhead relative to a local memory read in DynPtr. We opted for a
direct-mapped design, because associativity would require serial
checks of tags and increase PP occupancy and handler complexity.

COMA improves performance when remote misses are
converted to local hits in the AM. Similar to RAC, a miss that
might have cost 100 cycles to go to the home and return would
only cost the local miss penalty of 19 cycles in COMA. However,
every cache miss emitted from the processor (local or remote
home) must check the local AM before returning data to the
processor or forwarding the request to another node. Therefore,
data requests that must be forwarded to another node are slowed
considerably. Similar to RAC, a miss in COMA to data not
allocated in the local node costs 16 cycles of PP latency before it is
forwarded to home, as opposed to only 3 cycles of PP latency for
DynPtr.

In COMA there is no static home for data.2 The protocol is
responsible for tracking data and keeping at least one copy of the
data in the system. This is accomplished by designating one copy
as the master copy. If a master copy is replaced from the AM
because of capacity or conflict, a new owner must be found for that
datum. The protocol generates a replacement request to the static
home (i.e. where directory information is maintained). However,
since the memory at that node may already be occupied by another
master copy, the home is responsible for finding another node to
serve as master. This is the most significant cause of complexity in
COMA-F. Master replacement handlers account for 23% of the
handlers in our COMA-F implementation.

Resource management is by far the most difficult issue facing
COMA-F on FLASH. Requests and replacements may not be
immediately serviceable by the home because of lack of resources.
In this event, the requestor must be able to regenerate the request
to avoid deadlock. Careful resource management and dealing with
resource corner cases account for approximately 4,000 lines of
code in our COMA-F implementation. In a hardwired
implementation, extra storage may be allocated specifically for
handling replacements, thus avoiding many deadlock conditions.
This hardware will need to be relatively complex to accommodate
worst case conditions.

In summary, while COMA-F has been proposed in the
literature, this paper represents its first real implementation. We
find that the static complexity is significantly more than the DynPtr
and RAC protocols. The number of handlers increases from ~65
for DynPtr and RAC to 87 for COMA, and the number of lines of
code increases from ~8500 to 15,432 (Table 1). The majority of

2. While the directory information for a given line is always maintained at
the static home, the data memory at that home is not reserved for this line
and can be occupied by remote lines that map to the same AM entry. Hence
the “home” for data is not static.

the protocol code (~50% of the static code size) is devoted to
handling replacements from the attraction memory.

Page-based Migration/Replication

The final scheme that we consider is OS-based page migration
and replication[28]. We call this scheme MigRep. The underlying
coherence protocol is identical to DynPtr, except for a small
overhead to count per-page-per-node cache miss rates. To reduce
run-time overhead, sampling is used—only one out of every 10
misses runs the instrumented handler to update the miss statistics.
The rest of the migration and replication logic is executed in
software by the OS kernel.

The virtual memory (VM) of the operating system is modified
to support the migration and replication of pages. Because it is
implemented in software, there is a fairly sophisticated policy that
decides when to migrate or replicate a page. This decision is
driven by a set of cache miss counters (stored in memory) that
monitor the accesses to each page from the processors and
generate an interrupt to the OS when a “hot” page is detected.
MigRep therefore is responding to longer-term locality trends.
Currently MigRep does not migrate or replicate kernel pages
because the IRIX5.3 kernel is not mapped through the TLB. More
details about the implementation of the MigRep scheme can be
found in [28]. The main sources of kernel overhead in page
migration and replication are: fielding the interrupt from the cache-
miss counting code, making the policy decision for the page,
allocating and copying the page, and maintaining page coherence
through locks and the flushing of TLBs.

MigRep replicates or migrates data to local memory at page
granularity in response to excessive cache misses to a page. When
the protocol decides to move or copy a page, the home of the page
(i.e. directory information) and the data become local to the node.
MigRep differs from RAC and COMA, which just cache the data
in local memory, but do not move the directory information.
Caching implies that the data may be dropped because of capacity
or conflict reasons, and may have to be fetched again from remote
memory in the future. MigRep treats all of main memory equally,
and does not need to statically partition it. However, it is important
to respond to memory pressure and not cause paging because of
excessive replication. This is done at the policy level by reducing
replications in the face of memory pressure, and through selective
reclamation of replica pages. Thus the MigRep scheme is robust to
memory pressure [28].

Qualitative analysis

The alternative protocols to base CC-NUMA attempt to reduce
application run time by decreasing the memory stall component of
execution time via replication/migration of data to local memory.
To better understand the potential benefits from the different
techniques, we examine protocol behavior under different kinds of
cache misses:
• Capacity and conflict misses arise because of the limited size

and associativity of the processor caches. All of the schemes
can help satisfy these misses locally by caching in memory or
moving the data to the local node through migration or repli-
cation. MigRep will achieve relatively less locality because it



counts cache misses and waits for a page to get hot, and does
not cache eagerly. MigRep also needs to find a consistent
miss pattern across the entire page, not just for a cache line.
Between COMA and RAC, the big difference is the follow-
ing: COMA can dedicate all of the local memory to caching
remote data (e.g., if the working set is large and we start with
very poor initial allocation). In contrast, RAC can dedicate
only as much memory as is statically allocated to it, which
will likely be only a small fraction of the local node memory.

• Coherence misses arise when data is actively being read and
updated by multiple processors. Data suffering from coher-
ence misses is unlikely to benefit from any of the locality
schemes because of frequent invalidations of cached copies.
MigRep can be robust to such misses because the cache-miss
counting and the policy together detect these patterns and
take no action for such pages. The RAC scheme has a slightly
higher handler overhead compared to DynPtr, so it will see
some degradation. As compared to DynPtr and RAC, COMA
has extremely high handler latencies and occupancies for
coherence misses and will perform poorly if coherence
misses dominate.

4    Experimental Environment
We now describe the experimental environment for the results

that we will present in the next few sections. First, we describe the
machine configuration that we use for our experiments. We then
describe and characterize the workloads we used.

Machine Assumptions

We model our CC-NUMA machine based on the Stanford
FLASH architecture[15]. The FLASH machine is currently in the
process of hardware bring-up. As this machine is not yet available
for experimentation, we simulate our experiments using
SimOS[21]. SimOS is a complete and accurate simulator of the
FLASH machine. It is capable of booting a commercial operating
system, Silicon Graphics’ IRIX5.3 in this case, and executing any
application that is binary compatible with IRIX. In conjunction
with FlashLite, the threads-based memory system simulator for
FLASH, SimOS accurately models the processors, caches,
memory system, and I/O devices (disks, ethernet, etc.) of the
system, including all the functions of the MAGIC chip. FlashLite
simulates the same compiled cache coherence protocol handlers
used on the actual FLASH machine, using a cycle-accurate
instruction set emulator as its protocol processor thread.

We model an eight processor FLASH machine. The benefits of
migration and replication should be apparent even with this small

configuration because the probability that a process would
randomly find an address in local memory is already quite small
(0.125). The following lists the other machine characteristics we
assume: 300MHz processors with a TLB size of 64 entries;
sequential consistency with blocking reads and writes3; separate
32KB two-way set-associative first-level I and D caches with a one
cycle hit time; a unified 512KB two-way set-associative second-
level cache with a 50ns hit time. For the Raytrace and Splash
workloads we use a 256KB cache because their working sets are
smaller. The base configuration has 256MB of memory, i.e. 32MB
per node. MAGIC’s processor clock speed is 100 MHz. For the
DynPtr protocol, assuming no contention and perfect MAGIC
cache behavior, the local miss latency is 190ns and the remote read
miss latency for data clean at the home is 864ns.4 FlashLite, of
course, properly accounts for contention at all its interfaces and
accurately models the MAGIC caches, so actual miss times may
be greater unless the machine is truly idle.

The SGI IRIX5.3 kernel has some significant bottlenecks even
at the eight processor level. All of the kernel code and data is
allocated in low memory and so ends up on node 0. There is a
coarse lock, memory_lock, for most of the operations related to
the VM system. This lock is the source of much contention for
workloads that are kernel-intensive. For the MigRep scheme we
modified IRIX5.3 to implement the migration and replication of
pages.

Workload Characterization

The value of a study such as this depends critically on the
workloads used. We use four diverse and realistic workloads to
capture some of the major uses of compute servers. These
workloads are summarized in Table 2. Table 3 shows the
breakdown of execution time for the workloads when run with the
base DynPtr protocol, and Table 4 shows the miss
characterizations. We divide misses into user, kernel, and
synchronization (sync) misses, and list percentages of
capacity/conflict, cold, and coherence misses for instructions and
data.

Single Parallel Application (Raytrace): This workload
consists of Raytrace[24], a single compute-intensive parallel
graphics algorithm widely used for rendering images. The
processes are locked to individual processors, a common practice
for dedicated-use workloads. This workload has very little kernel

3. The SGI IRIX kernel assumes the sequential consistency model.

4. For an eight node hypercube, the average number of hops traversed by a
message is 2.1. The computed remote latency assumes this number of hops
to reach the home.

TABLE 2. Description of the workloads. All workloads are run on eight processor machines.

Name Contents Notes

Raytrace Raytrace parallel graphics applications (rendering a scene)

Splash Raytrace & Ocean multiprogrammed, compute-intensive parallel applications

Engineering 6 Flashlite, 6 Verilog multiprogrammed, compute-intensive serial applications

Pmake 4 four-way parallel Makes software development (compilation of gnuchess)



activity. Memory stall time is significant, about 33% of the non-
idle execution time, with the large part spent in user stall time.
Most data misses in Raytrace are to a large read-only shared data
structure representing the scene to be rendered. This data structure
overflows the secondary cache and leads to a large number of
capacity misses, clearly demonstrated in Table 4. Therefore, this
workload can potentially benefit from improved data locality.
Even though this workload is not load-balanced by the OS, the
unstructured accesses to the main data structure prevent effective
static partitioning.

Multiprogrammed Scientific Workload (Splash): The second
workload consists of parallel invocations of Raytrace and
Ocean[24]. The applications enter and leave the system at different
times, and a space-partitioning approach, similar to scheduler-
activations[2][26], is used for scheduling the jobs. Both Ocean and
Raytrace have large datasets that overflow the secondary cache.
Ocean exhibits nearest-neighbor communication, and also incurs
numerous misses to large private data arrays. Thus, we expect to
improve locality by migrating data. As described earlier, Raytrace
suffers from misses to a large, shared read-only data structure.
About 41% of the non-idle execution time is memory stall time.
This workload should benefit from better data locality because the
misses are predominantly capacity misses, but about 20% of the
kernel misses are coherence misses.

Multiprogrammed Engineering Workload (Engineering):
Engineering consists of large, memory-intensive, uniprocessor
applications. This is a multiprogrammed workload, scheduled by
UNIX priority scheduling with affinity[26]. The workload consists

TABLE 3. Execution time breakdown of the workloads under DynPtr.

Workload
Cumulative

CPU Time (sec)

CPU Time Breakdown (%)
Stall Time (% Non-Idle)

Kernel User

User Kern Idle Instr. Data Instr. Data

Raytrace 30.52 75 8 17 1.9 3.9 5.4 21.3

Splash 41.67 64 11 25 3.1 8.4 3.4 26.5

Engineering 37.43 78 6 16 1.4 3.8 33.1 29.2

Pmake 30.84 21 41 38 5.3 43.3 2.8 5.3

TABLE 4. Miss Characterization of the workloads.

Workload Mode
# misses

(millions)

% of total
number of

misses

Instructions Data

% cold % cap/conf % cold % cap/conf % coher.

Raytrace
User 6.40 88.9 0.06 17.7 4.74 77.0 0.51

Kernel 0.80 11.1 1.06 31.5 3.60 54.2 9.66

Splash
User 7.76 83.9 0.13 13.3 5.28 80.2 1.15

Kernel 1.49 16.1 0.76 39.1 2.45 38.4 19.3

Engineering
User 12.0 94.2 1.17 62.1 1.13 35.5 0.09

Kernel 0.75 5.8 1.32 35.2 6.69 38.8 18.0

Pmake
User 1.03 31.0 6.07 40.7 8.11 44.9 0.19

Kernel 2.30 69.0 0.73 24.8 5.71 19.0 49.8

of copies of two applications. One is the commercial Verilog
simulator VCS, simulating a large VLSI circuit. VCS compiles the
simulated circuit into C code, and the resulting large code segment
causes a high user instruction stall time. The other application is
FlashLite, the memory system simulator of the FLASH machine.
This is an extremely memory-intensive workload, with about 67%
of the non-idle execution time spent stalled for memory, almost all
of which is user memory stall time. Over 95% of the user misses
are capacity misses, indicating excellent potential improvements
from better data locality.

Multiprogrammed Software Development (Pmake): Our
final workload consists of four Pmake jobs, each compiling the
gnuchess program with four-way parallelism. The workload is I/O-
intensive, with a lot of system activity from many small short-
lived processes, such as compilers and linkers. UNIX priority
scheduling with affinity is used. The kernel time is double the user
time in this workload. Kernel instruction and data references,
rather than user references, account for the bulk of the memory
stall time; kernel stall time is about 50% and user stall time only
8.1% of non-idle execution time. 85% of user misses (instruction
and data) and 44% of kernel misses are capacity misses, but almost
50% of the kernel misses are coherence misses. The benefits from
data locality are not obvious for this workload. We use this
workload to focus on the migration and replication potential in the
kernel.



5 Simulation Results

The goal of our study is to determine how to best use the pool
of local memory on a node in a CC-NUMA system to improve
data locality and therefore application performance. For our first
comparison, we start with the assumption that there is sufficient
memory for the following purposes: the OS is able to fit the
footprint of the application in main memory, there is enough
reserved memory for caching in RAC and COMA, there is
sufficient main memory for MigRep to replicate pages, and there is
enough memory available for any protocol memory overheads.
For our workloads this translates to 32MB per node. RAC and
COMA reserve 16MB per node for local caching.5

For each workload, we first show a graph of the execution time
(Figure 3) of SCI and each of the data locality schemes normalized
to that of DynPtr. The kernel used for MigRep is different from
that used for the other runs6. To clearly show the effects of
migration and replication, we normalize the MigRep numbers to
that of the MigRep kernel with migration and replication disabled.
Execution time is broken down into user instructions, user local
and remote stall, kernel instructions, kernel local and remote stall,
and kernel synchronization time (time spent spin-waiting for
locks). For each workload, Table 5 provides more detailed data

5. Given the direct-mapped AM in our COMA implementation, the
amount of memory needed to avoid AM conflicts would be unreasonably
large. Therefore, COMA will suffer some conflicts.
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FIGURE 3. Base execution time comparison. For each workload we show the total execution time and a more detailed breakdown of
the kernel component of execution time. The execution times are normalized to the DynPtr protocol, except for MigRep. MigRep is nor-
malized to that of the MigRep kernel with migration and replication disabled.

Engineering

Splash

Pmake

Raytrace

showing the handler costs, PP occupancy, and percentage of
misses satisfied from local memory (Local %).

The observed performance of the data locality schemes is
fundamentally dependent on two factors: the improvement in data
locality that the scheme is able to provide, and the real cost of
providing the better locality (implemented handler complexity or
operating system overhead). The following trends are
characteristic of the different schemes across the workloads:
• RAC, COMA, and MigRep are all able to improve the data

locality seen by the workloads compared to DynPtr and SCI.
RAC and COMA are able to achieve a better locality than
MigRep because they perform eager caching while MigRep
waits for hot pages. They are also able to extract locality at a
finer grain and to improve the locality of kernel data. COMA
achieves a lower data locality than RAC, because COMA
needs to always find a home for the master copies when
replacements occur, even at the cost of throwing away repli-
cas.

6. The difference in kernel time between the DynPtr kernel and the
MigRep kernel (with migration and replication disabled) is practically zero
for all of the workloads except Pmake. For Pmake, the runs with the
DynPtr kernel are 21% faster than the runs with the MigRep kernel with
migration and replication disabled. The bulk of the increase is attributable
to synchronization for the single coarse lock memory_lock in IRIX5.3,
and the allocation of kernel code and data in the memory of node 0 causing
great contention on this node (described in Section 4). The characteristics
of Pmake, forking and exiting of many short-lived jobs, brings out the
worst of this problem.



• The improved data locality for all schemes results in a smaller
number of handlers invoked per miss compared to DynPtr
and SCI. Locally-satisfied cache misses do not require remote
intervention.

• SCI’s distributed nature and management of a doubly-linked
sharing list result in a much larger number of handlers
invoked per miss than the other protocols. This drives up the
average PP utilization and decreases performance.

• The significantly higher handler complexity of SCI and
COMA result in a much higher average handler occupancy.

• The broad trends are similar for kernel and user time. MigRep
cannot improve locality for kernel misses because it does not
migrate or replicate kernel pages. In addition, MigRep incurs
kernel overhead to migrate and replicate user pages.

The results of the Raytrace and Splash workloads are fairly
similar and follow the general trend outlined above. DynPtr is 25%
faster7 than SCI. RAC performs significantly better than DynPtr

TABLE 5. Handler and occupancy statistics for the workloads.
The average occupancy per handler (occ./hand.) is computed by
dividing the total number of occupancy cycles by the number of
handler invocations. Local % is the percentage of references
satisfied by the local memory.

Protocol
Handler

calls/miss

Avg.
occ./hand.
(PP cycles)

Avg.
utilization
of PPs(%)

Utilization
 of busiest

PP (%)

Local
%

Raytrace

DynPtr 4.55 15.6 18.2 58.8 14

SCI 6.39 37.1 48.5 64.5 13

RAC 2.18 18.7 13.7 16.2 94

COMA 3.08 25.3 23.1 40.0 81

MigRep 3.08 12.8 13.5 38.1 63

Splash

DynPtr 4.53 13.8 17.9 38.1 13

SCI 5.74 34.9 45.5 54.2 13

RAC 2.37 20.8 17.1 26.7 90

COMA 3.04 25.8 23.5 45.5 82

MigRep 3.09 13.1 14.4 38.2 62

Engineering

DynPtr 4.37 13.3 28.1 70.7 10

SCI 5.18 33.1 52.5 73.1 16

RAC 2.04 19.8 33.9 44.7 94

COMA 3.28 28.6 44.9 79.2 71

MigRep 2.80 11.9 24.6 50.7 66

Pmake

DynPtr 4.69 15.3 14.6 69.5 13

SCI 6.46 33.8 34.7 52.7 13

RAC 3.78 26.8 20.2 58.2 57

COMA 4.98 33.8 22.4 82.7 56

MigRep 4.51 16.3 20.5 80.6 25

(27% faster). COMA and MigRep perform about the same, 12-
14% faster than DynPtr, but not as well as RAC. Compared to
MigRep, COMA has a slightly larger user time and a slightly
smaller kernel time for the reasons outlined previously.

The Engineering workload presents a different picture. In this
workload the RAC and MigRep schemes both show large gains,
64% and 56% faster than DynPtr, respectively. This is a memory-
intensive workload with a high miss rate and consequently a
higher average controller utilization. The higher average controller
utilization of RAC overshadows some of the gains due to
increased locality. As a result, MigRep has lower user time despite
significantly lower data locality. MigRep does, however, add
kernel time for performing page migration and replication. For the
engineering workload, SCI suffers from the fatal combination of
having the largest number of handlers invoked per miss and having
the largest PP occupancy per handler. The end result is that DynPtr
runs 46% faster. For COMA, the occupancy effects for this high
miss-rate workload completely nullify any gains from better
locality.

The Pmake workload is different from the previous three
because it spends a larger fraction of its time in the kernel than in
user mode, it consists of many small jobs rather than a few larger
ones, and a large fraction of its misses are coherence misses, not
capacity. Most of the kernel misses go to node 0, leading to
extremely high controller utilization on that node. The RAC
provides about 6% improvement through eager caching of user
and kernel data. MigRep is unable to deal with kernel misses, and
cannot provide any benefits for small jobs that finish quickly.
Therefore, it is unable to significantly improve data locality, and
DynPtr runs about 9% faster.

Interestingly, SCI has the largest average PP utilization, but the
smallest maximum utilization on any one node. Again, the Pmake
workload displays significant hot-spotting behavior, and SCI can
improve performance in such cases by more evenly distributing
the requests throughout the machine. In this case, the hot-spotting
is not severe enough for SCI to overcome its higher overhead and
DynPtr is still 42% faster. SCI is, however, 25% faster than
COMA.

Coherence (write) misses are very expensive in COMA because
the home has to retrieve the data from its current owner, send out
invalidations to all sharers, and then hold on to the data until all the
invalidations are received. As a result, the number of handlers per
miss increases (4.98 vs. 4.69 for DynPtr) despite the better locality
(56% accesses satisfied locally vs. 13% for DynPtr). The resulting
average occupancy per miss is 2.2 times that of DynPtr. This large
increase in occupancy results in DynPtr running 78% faster than
COMA, entirely accounted for by COMA’s increase in kernel stall
time; the kernel is the source of the coherence misses.

Overall, we see the fundamental performance trade-off between
better data locality and increased handler occupancy across all the
workloads, whether they are user-intensive or kernel-intensive.
With no memory constraints, RAC performs best, because it is
able to improve data locality with only a small increase in handler
complexity over DynPtr. While the trade-off between better

7. The figures show normalized execution time. Speedup is computed
based on speed, which is the inverse of execution time[13].



locality and protocol complexity is true in general, it is more
extreme in the FLASH controller where we can see the effects of
handler complexity in our implementation of COMA. COMA
performs worse than MigRep because COMA has much greater
handler complexity, even though MigRep achieves poorer data
locality and has associated kernel overheads. However, COMA is
able to improve locality and provide benefits in some cases.

6    Exploration of Parameters
The two results that stand out from the experiments in Section 5

are that the RAC consistently performs well and that SCI and
COMA suffer because of handler complexity and the resulting
high controller occupancy. This section explores these two points
more closely by considering the effect of RAC size on the
performance of RAC, and the effect of controller speed on the
performance of SCI and COMA.

RAC Size

The experiments for the base results assumed that RAC had
16MB of memory per node reserved for caching data. Memory
that is local to a node is shared by the OS and the RAC. Therefore,
any memory assigned to the RAC cannot be used by the OS to
allocate pages. A large statically-sized RAC means less memory
available for the OS, and this may potentially cause unnecessary
paging or may limit the workload size. Given a more limited RAC
size, one cannot assume that the working set will always fit in the

RAC. It is important to understand the limitations of the RAC
design and its performance in the regime where working sets do
not easily fit in the RAC.

To measure the effect of memory pressure on the RAC
protocol, we varied the size of the RAC from 256KB to 16MB for
each application. Figure 4 shows the hit rate in the RAC for the
different RAC sizes. Figure 5 shows the execution time for each
case normalized to DynPtr.
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FIGURE 4. Effect of RAC size on RAC hit rate.
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As expected, the performance of the RAC scheme drops as the
RAC size is reduced. Figure 4 clearly shows that as the RAC size
is reduced, the hit rate in the RAC drops sharply for all the
applications (with the knee around 2-4MB). Figure 5 shows that at
smaller RAC sizes most of the gains over DynPtr are lost.
Interestingly, the Engineering workload and Pmake show RAC
performance that is worse than that of DynPtr for smaller RAC
sizes. The increase is in user time for the Engineering workload
and primarily in kernel time for the Pmake workload. This arises
because of the larger handler occupancy of RAC along with the
reduced data locality at the smaller RAC size.

We expect slowdowns of a similar nature for COMA as the
reserved memory is reduced.

Protocol Processor Speed

We have seen that one of the major factors contributing to
reduction in performance is high protocol processor (PP)
occupancy. The performance effects of PP occupancy are most
apparent in SCI and COMA. While some of this overhead is
inherent in the complexity of the protocols, we would like to
consider the more general effect on performance beyond the
FLASH machine, i.e. if the implementations were more efficient,
or if they were done in hardware. To approximate such a scenario
(and reduce the effect of PP occupancy on the final result) we run
the PP at various faster speeds, 2x, 3x, and 6x the current speed.
We chose 2x and 3x to study the effect of a node controller of
approximately the same speed as the CPU, and 6x to minimize PP
occupancy. Because COMA already shows benefits for Raytrace,
we focus on Splash, Engineering, and Pmake. The results of these
runs are shown in Figure 6. In each case the SCI and COMA run
times are normalized to a DynPtr run with the correspondingly
faster PP.

Figure 6 shows that SCI can benefit from a faster node
controller, i.e. from lower PP occupancy. SCI’s performance
relative to DynPtr improves dramatically at the 2x PP speed, but
begins to flatten out at 3x and faster speeds. Even with a faster PP,
SCI never outperforms DynPtr. SCI still invokes more handlers
per miss than DynPtr and has to consult its distributed protocol
state at both the requestor and the home. This intrinsic overhead is
not affected by increases in controller speed.

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

 N
or

m
al

iz
ed

 E
xe

cu
tio

n 
tim

e K Sync

 128

  91
 107

  88
 104

  87
 101

  87

 146

  99

 117

  87

 108

  82

 102

  85

 142

 178

 119
 134

 116
 128  126

 114

S C
1x

S C
2x

S C
3x

S C
6x

splash

S C
1x

S C
2x

S C
3x

S   C
6x

engr

S C
1x

S C
2x

S C
3x

S C
6x

pmake

K RStall
K LStall
K Inst
U RStall
U LStall
U Inst

FIGURE 6. Effect of PP speed on SCI (S) and COMA (C) performance. All numbers are normalized to the equivalent DynPtr run with
the same PP speed. The 1x PP speed corresponds to the default configuration.

PmakeEngineeringSplash

We see that the COMA protocol can also benefit from a faster
PP. The gain for Pmake and Splash is largest at 6x PP speed,
although Splash sees little benefit beyond 3x PP speed. In the
Pmake workload the faster PP (lower occupancy) improves
performance by reducing both the remote stall time and the
synchronization time. However, COMA is still slower than
DynPtr.

The other protocols, RAC and MigRep, will see less benefit
from a faster PP in most cases because they are not as occupancy-
bound as SCI and COMA.

7    MIGRAC: A New Proposal
Our results show that the RAC scheme has many advantages: it

captures coarse and fine grain locality, its eager caching gives
benefits from short-term temporal locality, it has relatively low
overhead over DynPtr, and it is somewhat robust. However, it also
has the following disadvantages. A statically-sized large RAC will
take away memory from the OS and could cause paging. A smaller
RAC that does not fit the working set of an application will not
provide much benefit and in some cases can degrade performance.

MigRep also improves performance for three out of the four
workloads. Its main advantage is that it does not need to explicitly
partition memory. The OS is able to dynamically respond to
memory pressure and balance replication and paging. By
migrating or replicating pages, it is also able to explicitly move the
home to local memory, thus removing any future accesses to a
remote node. However, MigRep works at the granularity of pages
and cannot provide benefit with finer-grain sharing.

There is a natural synergy between these two schemes when
combined. The RAC can eagerly capture fine-grain sharing and
short-term locality in both the user and kernel references. MigRep
can capture long-term sharing of page-size chunks. MigRep can
move such pages to the local node, where they can be accessed
more efficiently. Once MigRep migrates or replicates a page to
local memory, the RAC no longer needs to cache these pages. This
can reduce the capacity misses in the RAC, potentially allowing
the use of a smaller statically partitioned RAC.

We call this new hybrid scheme MIGRAC. We evaluate
MIGRAC by comparing its performance to that of the equivalent
RAC and MigRep schemes. We size the RAC at a level where it is



showing a drop in performance because of capacity problems
(2MB for Pmake, 1MB for Engineering, and 512KB for Splash
and Raytrace). A larger RAC size is not interesting because the
RAC by itself is able to cache most of the required data. The
execution time results are shown in Figure 7 for the three
configurations. As in the base workload results, the Pmake time for
MigRep and MIGRAC are normalized to runs with the same
kernel, but with migration and replication disabled.

The execution time results show that MIGRAC is performing
as well as or better than either the equivalent RAC or MigRep
runs. The only exception is Pmake, where it performs slightly
worse than the equivalent MigRep run. In the other three
workloads it performs better than the RAC run, as much as 37%
faster for Engineering.

A more subtle advantage of MIGRAC can be seen from the
numbers in Table 6. This table shows that MIGRAC is able to both
reduce the number of pages replicated compared with MigRep,
and increase the RAC hit rate compared to the base RAC.
Replicating fewer pages implies that there is more free memory for
other uses, and having a higher hit rate means that the RAC is
better able to accommodate the workload. These numbers clearly
point to the synergy between RAC and MigRep that is achieved in
MIGRAC.

8    Related Work
Our work is novel in that it compares real implementations of

hardware-based and software-based migration/replication schemes
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TABLE 6. Robustness of MIGRAC.

Workload

RAC hit rate (%) Pages Replicated

RAC MIGRAC MigRep MIGRAC

Raytrace 48.0 55.5 2661 1083

Splash 40.1 50.4 2982 1460

Engr 34.6 46.7 3494 2083

Pmake 25.5 24.8 664 160

on realistic workloads, and includes the effects of OS accesses as
well. Most previous studies have focused either exclusively on
software-based approaches[3][5][28], or on all-hardware schemes
[14][29]. The OS-based page migration and replication work only
considered the benefits of better data locality over straight
NUMA[5] or CC-NUMA[28] hardware. In [29], Zheng &
Torrellas compared RAC versus COMA, and found that RAC
outperforms COMA in most cases, unless the sharing pattern is
migratory. While our results agree, their methodology and
workloads were quite different; their evaluation used scientific
workloads and did not use actual implementations of the COMA
and RAC schemes. Stenstrom et al[14] briefly compare page
migration and COMA for scientific workloads and conclude that
page migration can perform as well as COMA when sharing
patterns are coarse. However, this study used simple estimates for
the overhead of migrating or replicating a page. Other studies
evaluate RAC implementations in isolation but do not compare
them to other mechanisms of migration/replication[18][20].
Hagersten et al[10] compare hardware and software-assisted
schemes (CC-NUMA, COMA and Simple COMA) using
scientific applications, and conclude that Simple COMA and
COMA outperform CC-NUMA when memory utilization is low,
but perform worse than CC-NUMA under memory pressure. This
evaluation was done without real protocol implementations, and
they also do not consider explicit OS page migration/replication.
Falsafi and Wood[7] propose R-NUMA, a hybrid scheme of
Simple COMA and CC-NUMA, and compare it to each
individually for scientific applications. R-NUMA is found to be
more robust than either Simple COMA and CC-NUMA.

Our MIGRAC hybrid is most similar to R-NUMA and Simple
COMA. Simple COMA[10] is a hybrid hardware/software
approach which proposes tight coupling between the OS and
hardware. Instead of maintaining a separate tag store, the MMU
translation hardware is used to determine whether a datum is
present. Coherence granularity is kept separate from allocation
granularity. R-NUMA[7] is a hybrid scheme that dynamically
changes the coherence protocol on a per-page basis, switching
between Simple COMA and CC-NUMA depending on the sharing
pattern. The difference between these two schemes and MIGRAC



is that MIGRAC can perform either replication or migration of a
page, while S-COMA and R-NUMA only perform replication:
thus, MIGRAC can potentially utilize memory more efficiently by
not creating unneeded replicas. Moreover, unlike R-NUMA,
MIGRAC uses the same cache coherence protocol for all pages,
potentially leading to a simpler implementation.

9    Concluding Remarks
In this paper we have explored some of the options available to

system designers to transparently decrease the fraction of data
misses serviced remotely in DSM systems. The work is done in the
context of the Stanford FLASH multiprocessor, exploiting the fact
that the MAGIC memory controller allows one to use the local
DRAM in a variety of ways. The schemes studied are (i) base CC-
NUMA (DynPtr and SCI), (ii) CC-NUMA+RAC, (iii) COMA,
and (iv) CC-NUMA+MigRep. All these schemes are complete and
working implementations for the target hardware including
operating system modifications, and they work with both user and
kernel references from the workloads. As a result, we are able to
perform a realistic and fair comparison that has not been available
before. Based on the data, we can conclude that:
• SCI’s overhead and increased number of handlers invoked

per miss are too much to overcome at small machine sizes,
and SCI always performs worse than DynPtr. However, as
Pmake showed, SCI can improve performance in the face of
hot-spotting in the memory system, and may be a better
choice in larger-scale machines[12].

• Adding a simple RAC to base CC-NUMA is quite effective in
improving performance (e.g., 64% for Engineering workload)
by increasing data found in local DRAM. Furthermore, in the
case of FLASH, only one additional handler is needed and the
changes to other handlers are minor. We find that perfor-
mance is sensitive to RAC size, but the degradation is typi-
cally graceful.

• While COMA can reduce the execution time for some of the
applications (e.g., 14% for the Raytrace workload), the addi-
tional protocol complexity is substantial (the code size is dou-
ble that of the DynPtr protocol), and the improvements for the
workloads studied are less than those for RAC. Furthermore,
the performance can be significantly worse if coherence
misses dominate (DynPtr is 78% faster for the Pmake work-
load). While protocol processor occupancy (handler com-
plexity) is one of the causes of poor performance, there are
also more intrinsic reasons. This is demonstrated by showing
that even with a six-times faster protocol processor, Pmake
still performs 14% faster with DynPtr than with COMA.

• While MigRep is as effective as RAC for the Engineering
workload (56% improvement), in general, it is not as robust
in improving performance for some other workloads.
MigRep, however, shares the low hardware/firmware imple-
mentation complexity with the RAC implementation.

• We show that the MigRep and RAC schemes work in syner-
gistic ways in our hybrid scheme called MIGRAC—the
migration and replication capability reduce the requirement
for a large RAC, and the RAC, in turn, reduces the amount of
memory used for replication. We show that the MIGRAC
scheme performs well and is robust.

Finally, looking at our study from a different perspective, the
results point to the desirability of a FLASH-like approach of using
a programmable protocol processor and a unified directory-
memory/cache-memory/main-memory. Given that all of these
schemes can be implemented on a single machine, one can
imagine booting the machine with a specific scheme so as to
provide the best performance for a given workload.
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