
AMDAMDAMDAMD
Entering the Golden Age of Heterogeneous Computing

Michael Mantor
Senior GPU Compute Architect / Fellow

AMD Graphics Product Group

11

michael.mantor@amd.com

The 4 Pillars of massively parallel compute offload

• Performance
M ’ L 2 18 M th

• Power
Moore’s Law 2x < 18 Months

Frequency\Power\Complexity Wall
Parallel Opportunity for growth

• Price

• Programming Models• Programming Models

GPU is the first successful massively parallel
COMMODITY architecture with a programming model

that managed to tame 1000’s of parallel threads in

GPU is the first successful massively parallel
COMMODITY architecture with a programming model

that managed to tame 1000’s of parallel threads in g p
hardware to perform useful work efficiently

g p
hardware to perform useful work efficiently

22

Quick recap of where we are – Perf, Power, Price

ATI Radeon™
HD 4850

4x Performance/w and
Performance/mm² in a

year

ATI Radeon™ X1800 XT

ATI Radeon™ HD 2900 XT

ATI Radeon™ HD 3850

ATI Radeon™ X1900 XTX ATI Radeon™ X1950 PRO

ATI Radeon HD 2900 XT

33 Source of GigaFLOPS per watt: maximum theoretical performance divided by maximum board power.
Source of GigaFLOPS per $: maximum theoretical performance divided by price as reported on www.buy.com as of 9/24/08

ATI Radeon™HD 4850

Designed to Perform in Single SlotDesigned to Perform in Single SlotDesigned to Perform in Single SlotDesigned to Perform in Single Slot
SP Compute Power 1.0 T-FLOPS

DP Compute Power

Core Clock Speed

200 G-FLOPS

625 Mhz

Stream Processors

Memory Type

800

GDDR3

Memory Capacity

Max Board Power

512 MB

110WMax Board Power

Memory Bandwidth

110W

64 GB/Sec

44

ATI Radeon™HD 4870

First Graphics with GDDR5 First Graphics with GDDR5 pp
SP Compute Power 1.2 T-FLOPS

DP Compute Power

Core Clock Speed

240 G-FLOPS

750 Mhz

Stream Processors

Memory Type

800

GDDR5 3.6Gbps

Memory Capacity

Max Board Power

512 MB

160 WMax Board Power

Memory Bandwidth

160 W

115.2 GB/Sec

55

ATI Radeon™HD 4870 X2X2

Incredible Balance of Performance, Power, PriceIncredible Balance of Performance, Power, Price
Compute Power 2.4 TFLOPS

, ,, ,

Core Clock Speed 750 Mhz

DP Compute Power 480 G-FLOPS

Stream Processors

Memory Type

1600

GDDR5 3.6Gbps

Memory Capacity

Max Board Power

2 GB

285WMax Board Power

Memory Bandwidth

285W

230 GB/Sec

66

AMD FireStream™ 9250

• AMD’s Second Generation Stream Computing Productp g
• Single PCI Slot
• Computational Power

• One T FLOPS Single Precision Float• One T-FLOPS Single Precision Float
• 200 GFLOPS Double Precision

• 1 GB GDDR3
• 150 Watts 8GFLOPS/Watt
• Familiar 32 and 64 bit Linux® and Windows® Environment
• Stream software supports multiple GPUs per system• Stream software supports multiple GPUs per system
• Brook+ (Open Source C-level language & Compiler)

• GPU Shader Analyzer y
• AMD Code Analyst

• AMD’s Compute Abstraction Layer (CAL)

77

Crossfire FragBox QuadFire @ Falcon Northwest

• QuadFire 2x ATI RadeonTM 4870X2 2 GBQ

• 3200 Single Precision Stream Processer

• Or 160 DP units with 160 SP units

88

Or 160 DP units with 160 SP units

Rapid Advances for Compute
T d !!Today !!

Meet the ATI Radeon™ HD48xx
ArchitectureArchitecture

99

Terascale Unified Graphics Engine

• 800 highly optimized stream

processing units

• New Unified SIMD core layout

• Optimized texture units

• New texture cache designNew texture cache design

• New memory architecture

O ti i d d b k d f • Optimized render back-ends for

fast anti-aliasing performance

• Enhanced geometry shader &

tessellator performance

1010

Simple View of a Unified Data
Parallel Throughput MachineParallel Throughput Machine

• Highly threaded to hide latency for light
ALU l d d I/O t i d A

Work Dispatcher

ALU loads and I/O constrained Apps
– Hardware has support for ~16,000 shader

program invocations Unified Shader Core
800 hardware units Fetch

– Hardware has register & resources for each
invocation

• I/O bound with low ALU count

800 hardware units
>250 Clocks fetch latency

16,384 (threads)

Crossbar
& Caches

• I/O bound with low ALU count
– 16 arrive per clock,
– 16 leave per clock

40 threads issue fetch per clock

Output Crossbar

– 40 threads issue fetch per clock
– Fetch latency

300 clks latency 4,800 threads
1 dependant fetch 9,600 threads

MemoryPCIE

2 dependant fetch 14,400 threads

Host

1111

Interface

ATI Radeon™ HD 4800 Series Architecture
10 SIMD • 10 SIMD cores

– Each with 80 32-bit Stream Processing
Units
(800 total)

– Dual Identity – 16 64-bit & 16 32-bit
Stream Processing Units

• 40 Texture Units

GDDR5 Memory InterfaceGDDR5 Memory Interface

ATI
Radeon™

ATI
Radeon™ Difference

• 115+ GB/sec GDDR5 memory interface

HD 3870 HD 4870

Die Size 190 mm2 260 mm2 1.4x

Memory 72 GB/sec 115 GB/sec 1.6x

Texture Texture
UnitsUnits

SIMDSIMD
CoresCores

AA Resolve 32 64 2x

Z/Stencil 32 64 2x UVD & UVD & Z/Stencil 32 64 2x

Texture 16 40 2.5x

Shader 320 800 2.5x

Display Display
ControllersControllers

PCI Express Bus InterfacePCI Express Bus Interface

1212

SIMD Cores
• Each core:

– Includes 80 scalar stream processing units in total + 16KB
Local Data Share

– Has its own control logic and runs from a shared set of threads

– Has 4 dedicated texture units + L1 cache

– Communicates with other SIMD cores via 16KB global data g
share

• New design allows texture fetch capability to scale efficiently with
shader power, maintaining 4:1 ALU:TEX ratioshader power, maintaining 4:1 ALU:TEX ratio

1313

Stream Processing Units

• 40% increase in performance per
mm2*mm

• More aggressive clock gating for
imp o ed Pe fo mance pe Wattimproved Performance per Watt

• Fast double precision processingp p g
(240 GigaFLOPS)

• Integer bit shift operations• Integer bit shift operations
for all units
(12.5x improvement *)(12.5x improvement)

1414
Source of performance per mm2: maximum theoretical performance divided by surface area of aSIMD
Source of 12.5x improvement: for ATI Radeon™ HD 3800 Series 4 SIMDs x 16 shift operations per SIMD = 64 shift operations.
For ATI Radeon 4800 Series 10 SIMDs x 80 shift operations = 800 shift operations.

Texture Units
• Streamlined design

– 70% increase in performance/mm2 *

• More performance

– Double the texture cache bandwidth
of the ATI RadeonTM HD 3800 SERIESof the ATI Radeon HD 3800 SERIES

– 2.5x increase in 32-bit filter rate

– 1.25x increase in 64-bit filter rate

U t 160 f t h l k– Up to 160 fetches per clock

ATI

Peak 32-bit texture fetch rate

ATI
Radeon HD

3870

ATI
Radeon HD

4870

49.6 Gtex/s

120 Gtex/s

1515 Source of performance per mm2: maximum theoretical performance divided by surface area of the texture units

Texture Units

• New cache design• New cache design

– L2s aligned with memory channels

L1s store unique data per SIMD– L1s store unique data per SIMD

2.5x increase aggregate L1*

Separate vertex cache– Separate vertex cache

– Increased bandwidth

Up to 480 GB/sec of L1 texture Up to 480 GB/sec of L1 texture

fetch bandwidth

Up to 384 GB/sec between L1 & L2Up to 384 GB/sec between L1 & L2

1616
* Comparing ATI RadeonTM HD 4800 series and ATI RadeonTM HD 3800 series

Render Back-Ends
• Focus on improving AA performance per mm2

– Doubled peak rate for depth/stencil ops to
64 per clock

– Doubled AA peak fill rate for 32-bit & 64-bit color *Doubled AA peak fill rate for 32 bit & 64 bit color
– Doubled non-AA peak fill rate for 64-bit color

• Supports both fixed function (MSAA) and
programmable (CFAA) modes

Color
ATI RadeonTM

HD 3800
series

ATI RadeonTM

HD 4800
series

Difference

p g ()

No MSAA

32-
bit

16 pix/clk 16 pix/clk 1x

2x/4x
MSAA 8 pix/clk 16 pix/clk 2x

8x MSAA 4 pix/clk 8 pix/clk 2x

No MSAA

64-
bit

8 pix/clk 16 pix/clk 2x

2x/4x
MSAA 8 pix/clk 16 pix/clk 2xbitMSAA p p

8x MSAA 4 pix/clk 8 pix/clk 2x

Depth/stencil only 32 pix/clk 64 pix/clk 2x

1717
* Comparing ATI RadeonTM HD 4800 series and ATI RadeonTM HD 3800 series

Memory Controller Architecture

• New distributed design with hub

• Controllers distributed around periphery

of chip, adjacent to primary bandwidth

consumers

• Memory tiling & 256-bit interface allows

reduced latency, silicon area, and power

consumption

• Hub handles relatively low bandwidth

traffic

PCI Express® CrossFireXTM interconnect – PCI Express®, CrossFireXTM interconnect,

UVD2, display controllers,

intercommunication)

1818

ATI Radeon™ HD 4870 Computation Highlights

• >100 GB/s memory bandwidth

– 256b GDDR5 interface
4 SIMDs -> 10 SIMDs

–2.5X peak theoretical performance

• Targeted for handling thousands of
simultaneous lightweight threads

increase over ATI Radeon™ 3870
–~1.2 TFlops FP32 theoretical peak
–~240 GFlops FP64 theoretical peak

• 800 (160x5) stream processors

– 640 (160x4) basic units
(FMAC, ADD/SUB, CMP, etc.)

Scratch-pad memories
–16KB per SIMD (LDS)
16KB SIMD (GDS)~1.2 TFlops theoretical peak

– 160 enhanced transcendental units
(adds COS, LOG, EXP, RSQ, etc.)

–16KB across SIMDs (GDS)

Synchronization capabilities

– Support for INT/UINT in all units
(ADD/SUB, AND, XOR, NOT, OR,
etc.)

Compute Shader
–Launch work without rasterization
“Linear” scheduling– 64-bit double precision FP support

1/5 single precision rate
(~240GFlops theoretical
performance)

– Linear scheduling
–Faster thread launch

1919

performance)

1
9

Performance

• AMD Core Math Library (3870)

SGEMM - 300 GFLOPS700%

800%

SGEMM 300 GFLOPS

DGEMM - 137 GFLOPS

500%

600%

• FFT

305 GFLOPS (Mercury Computer

Systems Inc)300%

400%

500%

Radeon HD 3870 Systems, Inc.)

200%

300% Radeon HD 3870

Radeon HD 4870

0%

100%

Based on internal testing at AMD Performance Labs on reference platform. Configuration:
Intel Q6600 (2.4 GHz), 2GB DDR3, ASUS P5E3 Deluxe motherboard, Windows Vista®
Ultimate (32-bit). For ATI Radeon™ GPUs: CAL 1.01, Matrix multiply (CAL optimized
implementation, available in SDK), FFT (CAL optimized implementation), ATI Catalyst™ 8.6
software. Quoted peaks are based on manufacturer claims. All results normalized to ATI

2020

Radeon™ HD 3870 GPU.

ATI Radeon™ HD 4800 Series Stream Architecture

• Several enhancements done for stream computing

• Fast compute dispatch

• Local /Global data shares

• Increased Integer Processing Abilities

• Fast Mem import/exportFast Mem import/export

f f• Significant increases in performance on many

important stream processing workloads

2121

Agenda

Stream SDK strategy updateStream SDK strategy update

Stream implication for professional
d k tand consumer markets

Brook+

AMD’s Compute Abstraction Layer (CAL)

DirectX® 11.0 Compute Shader Introduction

O CL I t d tiOpenCL Introduction

2222

Stream SDK Momentum

•AMD was the first company to offer a freely
downloadable, open set of programming , p p g g
tools for GPGPU programming

Ad ti f St SDK l h d i 2006 •Adoption of Stream SDK, launched in 2006,
continues to grow

•Hundreds of topics have been posted and
discussed on the AMD Stream Developer discussed on the AMD Stream Developer
Forum, making it the most active developer
forum at AMD

• http://developer.amd.com/devforum

http://ati amd com/technology/streamcomputing/sdkdwnld html

2323

• http://ati.amd.com/technology/streamcomputing/sdkdwnld.html

Key imperatives for the growth
of an application eco-systemof an application eco-system

• Industry standard Programming models

• Tools, Libraries, Middleware

• Services

Research community and early adopters• Research community and early adopters

2424

AMD Stream Processing Strategy

Applications
(Game Computing, Video Computing, (Game Computing, Video Computing,
Scientific Computing, Productivity)

Tools, Libraries, Middleware
(ACML, Brook+, Cobra,
RapidMind, Havok etc) RapidMind, Havok etc)

Industry Standard Interfaces
(OpenCL, DirectX 11®, etc.)

Compute Abstraction Layer (CAL)

(OpenCL, DirectX 11®, etc.)

AMD Stream Platform

2525

Single Programming Environment
Top to bottom support of stream applications on AMD GPUsTop to bottom support of stream applications on AMD GPUs

Professional
AMD AMD FireStreamFireStream™ ™ 9250 Graphics9250 Graphics

1st GPU to Break 1Tflops barrier
8 SP GFLOPS per watt

AMD AMD FireStreamFireStream™ ™ 9170 Graphics 9170 Graphics
1st GPU w/Double Precision FP

ATI FireGL™ Graphics &

ATI FirePro™ Graphics

ATI Radeon™ HD Graphics

1H 2009

Consumer
Swift APU (planned)

2626

2H 2008 1H 2009

http://ati.amd.com/products/streamprocessor/specs.html

Brook+Brook+Brook+Brook+

Computing LanguageComputing Language

2727

What is Brook+?

Brook is an extension to the C-language for stream programming
originally developed by Stanford Universityg y p y y

Brook+ is an implementation by AMD of the Brook GPU spec on
AMD's compute abstraction layer with some enhancements

Asynchronous CPU->GPU transfers (GPU->CPU still synchronous)

Li ® Wi d Vi t ® Mi ft® Wi d ® XP 32 & 64 bitLinux®, Windows Vista®, Microsoft® Windows® XP 32 & 64-bit

Extension Mechanism
Allow ASIC specific features to be exposed without ‘sullying’ core
language

2828

Simple Example

kernel void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

Kernels – Program functions that
operate on streams

int main(int argc, char** argv)
{

int i, j;
float a<10, 10>;
float b<10 10>;float b<10, 10>;
float c<10, 10>;

float input_a[10][10];
float input_b[10][10];
float input c[10][10];

Streams – collection of data
elements of the same type whichp _ [][]

for(i=0; i<10; i++) {
for(j=0; j<10; j++) {

input_a[i][j] = (float) i;
input_b[i][j] = (float) j;

}

elements of the same type which
can be operated on in parallel.

}
}
streamRead(a, input_a);
streamRead(b, input_b);

sum(a, b, c); Brook+ memory access(, ,);

streamWrite(c, input_c);
...

}

Brook+ memory access
functions

2929

2
9

Brook+ kernels

kernel void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

Standard Streams - implicit and
predictable access pattern}

int main(int argc, char** argv)
{

int i, j;
float a<10, 10>;

predictable access pattern

kernel void sum(float a[], float b[], out float c<>)
{

int idx = indexof(c);
c = a[idx] + b[idx]; Gather Streams - dynamic readfloat b<10, 10>;
float c<10, 10>;

float input_a[10][10];
float input_b[10][10];
float input c[10][10];

c = a[idx] + b[idx];
}

Gather Streams - dynamic read
access pattern

kernel void sum(float a<>, float b<>, out float c[])
{

int idx = indexof(c);float input_c[10][10];

for(i=0; i<10; i++) {
for(j=0; j<10; j++) {

input_a[i][j] = (float) i;
input_b[i][j] = (float) j;

c[idx] = a + b;
}

Scatter Stream - dynamic write
access pattern

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

}
}

streamRead(a, input_a);
streamRead(b, input_b);

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

sum(a, b, c);

streamWrite(c, input_c);
...

}

[] [] [] [] [] [] [] []

3030

3
0

Brook+ Compiler

Converts Brook+ files into C++ code. Kernels, written in C, are
compiled to AMD’s IL code for the GPU or C code for the CPU.

Integrated
Stream Kernel

& CPU Program

CPU, Stream
Code Splitter

Kernel
Compiler

CPU Code
(C)brcc

CPU Emulation Code
(C++)

AMD Stream Processor
Device Code (IL)()brcc

brt
Stream Runtime (CAL)

CPU Backend GPU Backend

3131

3
1

31

Brook+ Compiler

IL code is executed on the GPU. The backend is written in CAL.

Integrated
Stream Kernel

& CPU Program

CPU, Stream
Code Splitter

Kernel
Compiler

CPU Code
(C)brcc

CPU Emulation Code
(C++)

AMD Stream Processor
Device Code (IL)()brcc

brt
Stream Runtime (CAL)

CPU Backend GPU Backend

3232

3
2

32

Improving and Evolving Brook+

• Improve and evolve Brook+

programming language, compiler and

runtime, including: Aims to provide a Aims to provide a
t bl hi ht bl hi h

improved error handling

data transfer optimizations

stable, highstable, high--
performance performance
platform for platform for

l ti l ti
C++ runtime API

access to CAL-level functionality

accelerating accelerating
applications today,applications today,

paving migration path paving migration path
t d t d access to CAL level functionality towards towards

OpenCLOpenCL//DirectX®
ComputeCompute

3333

CALCALCALCAL

Compute Abstraction LayerCompute Abstraction Layer

3434

Compute Abstraction Layer (CAL) goals

Expose relevant compute aspects of the GPU
C d P Command Processor
Data Parallel Processor(s)
Memory Controller Memory Controller

Hide all other graphics-specific features

Provide direct & asynchronous communication to device

Eliminate driver implemented procedural API
Push policy decisions back to application
Remove constraints imposed by graphics APIs

3535

3
5

35

CAL Highlights

Memory managed
D ’t h t ll i t i ff t tDon’t have to manually maintain offsets, etc
Asynchronous DMA: CPU➙GPU, GPU➙GPU, GPU➙CPU
Multiple GPUs can share the same “system” memoryMultiple GPUs can share the same system memory

Core CAL API is device agnostic

Enables multi-device optimizations
e.g. Multiple GPUs working together concurrentlye.g. Multiple GPUs working together concurrently
Multiple GPUs show up as multiple CAL devices

E t i t CAL id t iti f d i Extensions to CAL provide opportunities for device
specific optimization

3636

Commitment to Industry Standards – AMD Believes:

Industry standards and open collaboration is key to driving

development of stream applications and ensuring these applications

work on the broadest range of hardware

Proprietary Solutions
Industry Standards

Proprietary Solutions

• Helps to drive experimentation of new

technology

• As hardware and software evolves, key

to making it accessible in a unified way

• Stream processing has evolved to a
• Appropriate when no standards in place

Stream processing has evolved to a

point where proprietary solutions are not

helping to drive broader technology

acceptanceacceptance

3737

DirectX® 11DirectX® 11DirectX® 11DirectX® 11

Compute ShadersCompute Shaders
An evolving processing model for GPUs

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

3838

Windows Desktop and Graphics Technology

Introducing: the Compute ShaderIntroducing: the Compute Shader
• A new processing model for GPUs

– Data–parallel programming for mass market client appsp p g g pp

• Integrated with Direct3D
For efficient inter op with graphics in client scenarios– For efficient inter-op with graphics in client scenarios

• Supports more general constructs than before
– Cross thread data sharing
– Un-ordered access I/O operations

• Enables more general data structures
– Irregular arrays, trees, etc.g y , ,

• Enables more general algorithms
Far beyond shading

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

– Far beyond shading

Target: Interactive Graphics/GamesTarget: Interactive Graphics/Games

• Image/Post processing:
– Image Reduction, Histogram, Convolution, FFT

Eff t h i• Effect physics
– Particles, smoke, water, cloth, etc.

• Advanced renderers:
– A-Buffer/OIT, Reyes, Ray-tracing, radiosity, etc.

Game pla ph sics AI etc• Game play physics, AI, etc.

• Production pipelines
DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

Production pipelines

Target: Media ProcessingTarget: Media Processingg gg g

• Video:
Transcode Super Resolution etc– Transcode, Super Resolution, etc.

• Photo/imaging:g g
– Consumer applications

• Non-client scenarios:
– HPC, server workloads, etc.HPC, server workloads, etc.

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

Component RelationshipsComponent RelationshipsComponent RelationshipsComponent Relationships

Media playback or processing,
media UI, recognition, etc.Applications

Accelerator, Brook+, Rapidmind, Ct
MKL, ACML, cuFFT, D3DX, etc.

Domain
Libraries

Domain
Languages

DirectX® 11.0 Compute,
CUDA CAL OpenCL

Compute Languages

g g

CUDA, CAL, OpenCL,
LRB Native, etc.

CPU, GPU, LarrabeeProcessors , ,
nVidia, Intel, AMD, S3, etc.

Processors

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

Compute Shader FeaturesCompute Shader Featurespp
• Predictable Thread Invocation

R l f th d 1 D 2 D 3 D– Regular arrays of threads: 1-D, 2-D, 3-D
– Don’t have to ‘draw a quad’ anymore

• Shared registers between threads
Reduces register pressure– Reduces register pressure

– Can eliminate redundant compute and i/o

• Scattered Writes
– Can read/write arbitrary data structuresCan read/write arbitrary data structures
– Enables new classes of algorithms

Integrates with Direct3D resources
DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

– Integrates with Direct3D resources
4
3

Integrated with Direct3DIntegrated with Direct3Dgg

• Fully supports all Direct3D resourcesy pp
• Targets graphics/media data types
• Evolution of DirectX® HLSL
• Graphics pipeline updated to emit general• Graphics pipeline updated to emit general

data structures via addressable writes
• Which can then be manipulated by compute

shadershader
• And then rendered by Direct3D again

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

Integration with Graphics PipelineIntegration with Graphics Pipeline
• Render scene

• Write out scene image
Input Assembler

• Write out scene image

• Use Compute for image
post processing

Vertex Shader

Tessellation post-processing

• Output final image
R i

Geometry Shader

Pixel Shader

Rasterizer

Data Structure

Output Merger

Final Image

Scene Image
Compute Shader

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

Memory ObjectsMemory Objectsy jy j

• DXGI ResourcesDXGI Resources
– Used for textures, images, vertices, hulls, etc.
– Enables out-of-bounds memory checking

• Returns 0 on reads
• Writes are No-Ops

– Improves security, reliability of shipped codep y, y pp

• Exposed as HLSL ‘Resource Variables’
– Declared in the language as data objects

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

Optimized I/O IntrinsicsOptimized I/O Intrinsicspp
• Textures & Buffers

– RWTexture2D RWBufferRWTexture2D, RWBuffer
– Act just like existing types

S /O• Structured I/O
– RWStructuredBuffer
– StructuredBuffer (read-only)

– Template type can be any struct definitionTemplate type can be any struct definition

• Fast Structured I/O
A dSt t dB ff C St t dB ff– AppendStructuredBuffer, ConsumeStructuredBuffer

– Work like streams

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

– Do not preserve ordering

Atomic Operator IntrinsicsAtomic Operator Intrinsics

Enable basic operations w/o lock/contention:Enable basic operations w/o lock/contention:
InterlockedAdd(rVar, val);

InterlockedMin(rVar, val);

InterlockedMax(rVar, val);(,);

InterlockedOr(rVar, val);

InterlockedXOr(rVar, val);

InterlockedCompareWrite(rVar, val);p

InterlockedCompareExchange(rVar, val);

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

Reduction Compute CodeReduction Compute Code
Buffer<uint> Values;
OutputBuffer<uint> Result;p ;

ImageAverage()
{{

groupshared uint Total; // Total so far
groupshared uint Count; // Count added

float3 vPixel = load(sampler, sv_ThreadID);
float fLuminance = dot(vPixel, LUM_VECTOR);
uint value = fLuminance*65536;;

InterlockedAdd(Count, 1);
InterlockedAdd(Total, value);(,);

GroupMemoryBarrier(); // Let all threads in group complete

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

. . . .

SummarySummaryyy

• DirectX® 11 0 Compute Shader expected toDirectX® 11.0 Compute Shader expected to
deliver the performance of 3-D games to new

li tiapplications

• Tight integration between computation and• Tight integration between computation and
rendering

• Scalable parallel processing model
C d h ld l f l ti– Code should scale for several generations

DirectX® 11.0 Siggraph2008 slides courtesy of Chas Boyd Architect @ Microsoft
Windows Desktop and Graphics Technology

OpenCLOpenCLOpenCLOpenCL

Open Computing LanguageOpen Computing Language

Siggraph2008 slides courtesy of Aaftab Munshi
A hit t @ A l & Kh O CL W k M b

5151

Architect @ Apple & Khronos OpenCL Workgroup Member

Update on OpenCL

• Khronos OpenCL working group making aggressive progress:
OpenCl 1.0 Specification and introduction slides OpenCl 1.0 Specification and introduction slides
available since December 2008 SIGGRAPH Asia
(www.khronos.org/opencl/)

• Contributing Industry leaders of task/data parallel processors

Standardize framework and language for multiple • Standardize framework and language for multiple
heterogeneous processors

PC d l t d t h l i i Q1 2009• PC developers are expected to have early version in Q1 2009

• Based on a proposal by Apple
– OpenCL Parallel Computing on GPU and CPU

(Munshi @ SigGraph 2008)

5252

– Developed in collaboration with industry leaders

OpenCL – A Brief Previewp

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

Design Goals of OpenCLDesign Goals of OpenCL

• Use all computational resources in system

g pg p

– GPUs and CPUs as peers

– Data- and task- parallel compute model

• Efficient parallel programming model
– Based on CBased on C

– Abstract the specifics of underlying hardware

• Specify accuracy of floating point computations• Specify accuracy of floating-point computations
– IEEE 754 compliant rounding behavior

– Define maximum allowable error of math functions

• Drive future hardware requirements

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

OpenCL Software StackOpenCL Software Stack
• Platform Layer

query and select compute devices in the system

pp

– query and select compute devices in the system

– initialize a compute device(s)

t t t t d k– create compute contexts and work-queues

• Runtime
– resource management

– execute compute kernels

• Compiler
– A subset of ISO C99 with appropriate language additionsA subset of ISO C99 with appropriate language additions

– Compile and build compute program executables

– online or offline

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

– online or offline

OpenCL Execution ModelOpenCL Execution Model
• Compute Kernel

pp

– Basic unit of executable code — similar to a C function

– Data-parallel or task-parallel

• Compute Program

– Collection of compute kernels and internal functionsp

– Analogous to a dynamic library

• Applications queue compute kernel execution instances• Applications queue compute kernel execution instances

– Queued in-order

– Executed in-order or out-of-order

– Events are used to implement appropriate synchronization of execution

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

instances

OpenCL Data-Parallel Execution ModelOpenCL Data-Parallel Execution Model
• Define N-Dimensional computation domain

Each independent element of execution in N D domain is called a work item

pp

– Each independent element of execution in N-D domain is called a work-item

– The N-D domain defines the total number of work-items that execute in
parallel — global work sizeparallel — global work size.

• Work-items can be grouped together — work-group

W k it i i t ith h th– Work-items in group can communicate with each other

– Can synchronize execution among work-items in group to coordinate memory
accessaccess

• Execute multiple work-groups in parallel

• Mapping of global work size to work-groups

– implicit or explicit

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

OpenCL Task Parallel Execution ModelOpenCL Task Parallel Execution Model

• Data-parallel execution model must be implemented by all OpenCL
t d i

pp

compute devices

• Some compute devices such as CPUs can also execute task
parallel compute kernels

– Executes as a single work-item

– A compute kernel written in OpenCL

– A native C / C++ function

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

OpenCL Memory ModelOpenCL Memory Model
• Implements a relaxed consistency,

shared memory model

yy

Pivate
Memory

Pivate
Memory

Pivate
Memory

Pivate
Memory

• Multiple distinct address spaces

– Address spaces can be collapsed

Memory Memory Memory Memory

WorkItem 1 WorkItem 2 WorkItem 3 WorkItem 4

depending on the device’s memory
subsystem

Address Qualifiers

Co mpute Unit1Compute Unit 2

– Address Qualifiers

– __private

l l

Local Memory Local Memory

Global/Constant Memory Data Cache– __local

– __constant and __global

y

Compute Device

– Example:

• __global float4 *p; Compute Device Memory

Global Memory

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

Language for writing compute kernalsLanguage for writing compute kernals
• Derived from ISO C99

• A few restrictions• A few restrictions

– Recursion, function pointers, functions in C99 standard headers ...

• Preprocessing directives defined by C99 are supported

• Built-in Data Types

– Scalar and vector data types

– Pointers

– Data-type conversion functions

– convert_type<_sat><_roundingmode>

– Image types

– image2d_t, image3d_t and sampler_t

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

Language for writing compute kernelsLanguage for writing compute kernels
• Built-in Functions — Required

work item functions

g g g pg g g p

– work-item functions

– math.h

read and write image– read and write image

– relational

geometric functions– geometric functions

– synchronization functions

• Built in Functions Optional• Built-in Functions — Optional

– double precision

atomics to global and local memor– atomics to global and local memory

– selection of rounding mode

writes to image3d t surface

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

– writes to image3d_t surface

SummarySummary

• • A new compute language that works across GPUs and CPUs

yy

p g g

– C99 with extensions

– Familiar to developersFamiliar to developers

– Includes a rich set of built-in functions

Makes it easy to develop data and task parallel compute programs– Makes it easy to develop data- and task- parallel compute programs

• Defines hardware and numerical precision requirements

• Open standard for heterogeneous parallel computing

Beyond Programmable Shading Fundamentals Siggraph2008
slides courtesy of Aaftab Munshi

Summarizing AMD’s
Industry Standards EffortsIndustry Standards Efforts

•Easing cross-platform development with •Easing cross-platform development with
major enhancements for stream software

•Single development environment for
open flexible software development and open, flexible software development and
support for a broad range of GPU
solutionssolutions

•A clear path to OpenCL and DirectX® 11•A clear path to OpenCL and DirectX® 11

6363

AMD FireStream™ Go-to-Market:
Commercial Verticals Focus

Life
scie

n

C
lim

re
se

fo
re

c

Fa
cia

im
a
g

re
co

Fin
a

m
o

d
risk

O
il &

S
e
a
r

T
e
le

-

D
e
fen

ce
s

a
te

a
rch

 a
n

d

ca
stin

g

a
l

g
e

g
n

itio
n

n
cia

l
e
lin

g
 a

n
d

a
sse

ssm
e

&
 g

a
s

rch

-P
re

se
n

ce

e
n

se

 e
n

t

e

6464

Building the Ecosystem:
AMD Stream Application Successespp

Developing Neurala Technology Platform for
advanced brain-based machine learning
applications applicable to finance image

The Telanetix Digital Presence product line enables
fully immersive and interactive meeting
environments that incorporate voice video and applications – applicable to finance, image

processing, etc.

Achieving 10-200x speedups* on biologically
inspired neural models

environments that incorporate voice, video and
data from multiple locations into a single
environment

Stream computing drives optimal performance,
maximum flexibility for future enhancements

6565 •AMD FireStream™ 9150 versus dual AMD Opteron™ 248 processor (using only a single processor for comparison)
w/ 2GB SDRAM DDR 400 ECC dual channel and SUSE Linux 10 (custom kernel)

•Performance information supplied by customer(s). AMD has not independently verified these results

Building the Ecosystem:
Stream Research Breakthroughs

Centre de Physique des Particules de
Marseille

ACCIT
Parallel solutions for computationally-intensive

g

Tomographic Reconstruction: Feldkamp, Davis,
Krell Algorithm. Done by Alain Bonissent.

Widely used for tomographic reconstruction of X-
Ray CT scanner data

Parallel solutions for computationally intensive
EDA simulation engines

Currently beta testing applications demonstrating
>10x speedup**

• Achieving 42-60x*
speedups

• This image: 7 minutes
in optimized C++;
10 d i B k+10 seconds in Brook+

6666 ** AMD FireStream™ 9150 versus quad-core AMD Phenom™ 9500 processor (2 GHz) w/ 8GB
ECC DDR2 running at 667 MHz and AMD 790FX motherboard running Windows XP 64-bit

Performance information supplied by customer(s). AMD has not independently verified these results

* AMD FireStream™ 9150 versus Intel® Core™ 2 Duo E6550 2.33 MHz running Windows XP 32-bit

Building the Ecosystem:
Stream Development Tools Successesp

HMPP Toolkit for development
on accelerators; industry
solutions for oil and gas,
d f fi lif i

Facilitating parallel computing
for financial applications

Development Environment for
multi-core CPUs and GPUs

Demonstrating 55x speedup*
on binomial options pricing defense, finance, life scienceson binomial options pricing
calculator

6767 •AMD FireStream™ 9150 versus Quantlib running solely on single core of a dual-processor
AMD Opteron™ 2352 B3 processor on Tyan S2915 w/ Windows XP 32-bit (Palomar Workstation from Colfax)

•Performance information supplied by customer(s). AMD has not independently verified these results

Building the Ecosystem:
Stream Development Services p

"Provide Stream Computing consulting,
development and integration services specializing

Provides specialized, high-performance
computing systems and software designed p g p g

in the following industries -
- Oil & Gas
- Medical Imaging
- Financial Services"

for complex HPC and embedded
applications

Achieving 305 GFLOPS on large 1D complex
single-precision FFTs

6868 Mercury benchmark system details: 2x Opteron quad-core 2.3GHz processors, 4GB, ATI Radeon 4870 GPU

Expansion of Stream Strategy
into Consumer Applicationspp

Science Gaming Productivity EntertainmentScience Gaming Productivity Entertainment

6969

7070

http://developer.amd.com/documentation/videos/pages/froblins.aspx#one

7171

7272

7373

Summary & Questionsy Q

Easing cross platform development Easing cross-platform development
with major enhancements for stream
software strategyg

Aggressively expanding stream strategy Aggressively expanding stream strategy
to consumer segment

Contact: AMD Stream Computing SDK
http://ati.amd.com/technology/streamcomputing/

7474

Disclaimer and Attribution

DISCLAIMER
The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions and typographical errors.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR
IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY
DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

ATTRIBUTION
© 2008 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Opteron, AMD Phenom, ATI, the ATI
logo, Radeon, FireGL, FirePro, FireStream, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other
names, Microsoft, Windows, and Windows Vista are registered trademarks of Microsoft Corporation in the United States and/or
other jurisdictions are for informational purposes only and may be trademarks of their respective owners.

7575

