
Advanced R7xx Features

Compute Shaders

• More general approach for GPU Compute
− Removes graphics-centric terminology and ideas
− Exposes GPU as an array of parallel processing elements
− Removes graphics pipeline from the picture (no PS, GS,

VS)

• Disconnects output domain from execution domain
− Read anywhere, write anywhere (Global Buffer)
− Linear memory format
− Gives more control to the kernel writer on thread execution

and corresponding optimizations

2

Compute Terminology

• Thread – Single invocation of a kernel
• Group – Set of threads that can share data and run

together on a single SIMD. Multiple groups can run on a
single SIMD if registers allow

• Wavefront – Group of 64 threads running concurrently
on a SIMD (16 SPs * 4 cycles)

• Neighborhood - Group of 4 threads in the same
Wavefront having consecutive thread IDs (Tid)

3

Using Compute Mode in IL

• Header
il_cs_2_0 (Instead of il_ps_2_0)

• Number of threads per group
dcl_num_thread_per_group 64

• New Indexing Values – No more vPos/vWinCoord
− vTid – ID of thread within a group
− vaTid – ID of thread within a domain
− vTgroupid – ID of group within a domain

• e.g.
Group ID (l0.x = 6) Upper 26 bits in vaTid0 in above case
ishr r0.x, vaTid0.x, l0.x

Tid within a group (l1.w = 0x3F) Lower 6 bits in vaTid0
and r0.y, vaTid0.x, l1.w

4

Using Compute Mode in CAL

• New Entry Points
calCtxRunProgramGrid

– Routine to launch kernel in Compute Mode
– Exposed as a CAL extension

• New Domain specification mechanism
CALprogramGrid

– Specifies various parameters for kernel launch
struct {
CALfunc func; /* CALfunc to execute */
CALdomain3D gridBlock; /* size of a block of data */
CALdomain3D gridSize; /* size of 'blocks' to execute */
CALuint flags; /* misc grid flags */

} CALprogramGrid;

5

Using Compute Mode in CAL

CALprogramGrid pg;
pg.func = func;
pg.flags = 0;
pg.gridBlock.width = 64; // same as the value in the

// kernel for block size
pg.gridBlock.height = 1;
pg.gridBlock.depth = 1;
pg.gridSize.width = (1024 * 1024 + 63) / pg.gridBlock.width;
pg.gridSize.height = 1;
pg.gridSize.depth = 1;

// Get the function ptr for CAL Extension
calExtGetProc((CALextproc*)&calCtxRunProgramGrid,
CAL_EXT_COMPUTE_SHADER, "calCtxRunProgramGrid");

// Launch the kernel in compute mode
calCtxRunProgramGrid(&event, *ctx, &pg);

6

Using Compute Mode

• Key Items to Remember
− Output resources are required to be Global Buffers (only 1

supported).
− Cache characteristics will be different from ‘regular kernels’

due to different execution order, e.g. for 8 MRT MMM
algorithm implemented using CAL,

• PS 8 MRT - 393 Gflops

• PS MemExport - 393 Gflops

• CS MemExport - 222 Gflops

− R7xx supports only linear thread dispatch
• True 3D grid blocks available with future hardware only
• For R7xx, gridBlock.width == dcl_num_thread_per_group

7

R7xx - 2008

Per-SIMD
L1 Cache

Per-SIMD
Shared
Memory

Data Sharing

• Local Data Share (LDS)
− 16kb On-chip memory per SIMD shared between threads in

a block
− Write local, read global system
− Share between all threads in a block
− Synchronization required

• Shared Registers (SR) – Globally shared registers
− Registers that are global to a SIMD
− Sharing between all wavefronts in a SIMD
− Column sharing on the SIMD
− Persistent registers
− Atomic read, modify, write in same instruction guaranteed

9

Using LDS in IL

• Size of LDS memory to be used in a shader in dwords
dcl_lds_size_per_thread n

n <=64 and a factor of 4.
• LDS Memory sharing
dcl_lds_sharing_mode mode

where mode can be
− _wavefrontRel => Relative, i.e. each wavefront has its

private LDS memory
− _wavefrontAbs => Absolute, i.e. all wavefronts share the

same piece of LDS memory

10

Using LDS in IL

• Reading LDS Memory
read_lds (_neighborExch)(_sharingMode) dst, src0.xy

LDS location is given by src0.xy, where src0.x =
Tid, src0.y = offset
dst can be any register

Options Flags
− _sharingMode(rel) or _sharingMode(abs) for relative or

absolute sharing mode.
− _neighborExch If specified, the output of LDS will be

exchanged with its neighboring threads such that
• first thread gets all values from x-channels
• second thread gets all values from y-channels, and so on.
This flag is useful for applications like FFT matrix transpose.

11

Using LDS in IL

• Writing LDS Memory
write_lds (offset) (_sharingMode) dst, src

src can be any register
Location is fixed to (Tid, offset)
dst must be of type IL_REGTYPE_GENERIC_MEM. This is
only used to provide write mask
Options Flags
− _sharingMode(rel) or _sharingMode(abs) for relative or

absolute sharing mode.
− _lOffset(n)

• If not specified, offset = 0
• n must be a value of multiples of 4 in the range of [0, 60] and

smaller than declared lds_size_per_thread

12

Synchronization

• Fence
− Synchronization mechanism for threads within a group
− No thread in the group should pass that point until all

threads reach the point
− Disallow compiler optimizations to occur around that point
− The fence instruction has four flags - One of the flags must

be present and they can exist in any order
_lds is for LDS accesses
_threads is for thread synchronization
_memory is for non-lds memory accesses
_shared is for SR accesses

13

14

Q&A and Recap

• RV770 New Features
− Compute Shaders
− Data Sharing Mechanisms

	Advanced R7xx Features
	Compute Shaders
	Compute Terminology
	Using Compute Mode in IL
	Using Compute Mode in CAL
	Using Compute Mode in CAL
	Using Compute Mode
	R7xx - 2008
	Data Sharing
	Using LDS in IL
	Using LDS in IL
	Using LDS in IL
	Synchronization
	Q&A and Recap

