IBM Systems & Technology Group
Cell/Quasar Ecosystem & Solutions Enablement

° 2 allo old[e
»
s 0qAra 0 0
oll/QQuass 0 s

Cell Programming Workshop 3/2/2008 © 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Class Objectives

= You will learn how to write, build and run “Hello World!” on the Cell System
Simulator

= Navigate through the basic build process and make files
= Familiarize with gcc and xlc compilers
= Familiarize with the system simulator

= There are three different versions of “Hello World!” used in this session
— PPE only,
— SPE only, and
— Cell BE, i.e. using both PPE and SPE

« Synchronous
* Asynchronous

Trademarks - Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

How to build, compile and execute the “Hello World!” program

= Pre-requisites
— Toolchain
— Compiler
= Build Process
= Source Code
— Makefiles
— Source PPE
— Source SPE
= Simulator
— Getting the binary into the simulator
— Running the binary

3/2/2008 © 2007 IBM Corporation

3 Cell Programming Workshop

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

The build process

4 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Build Process

v
o ﬁ._’._’.

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SDK 3.0 Makefile

6 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Compiling within the SDK

= Top of build environment is /opt/cell/sdk/

= |ncludes the build environment files
— README_build_env.txt

* Provides details on the build environment features, including files, structure and
variables.

— make.footer

- Specifies all of the build rules needed to properly build CBEA binaries

- Must be included in all SDK Makefiles (referenced relatively if §CELL_TOP is not
defined)

* Includes make.header
— make.header

- Specifies definitions needed to process the Makefiles
* Includes make.env
— make.env
- Specifies the default compilers and tools to be used by make

= make.footer and make.header should not be modified

7 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Common Makefile variables

= DIRS
— list of subdirectories to build first
= PROGRAM_ppu PROGRAMS ppu
— 32-bit PPU program (or list of programs) to build.
= PROGRAM_ppub4 PROGRAMS ppu64
— 64-bit PPU program (or list of programs) to build.
= PROGRAM _ spu PROGRAMS_spu

— SPU program (or list of programs) to build.
— If written as a standalone binary, can run without being embedded in a PPU program.

= LIBRARY_embed LIBRARY_embed64

— Creates a linked library from an SPU program to be embedded into a 32-bit or 64-bit
PPU program.

= OBJS OBJS_<program>

— List of objects for the programs (or one specific program). By default, all objects in the
current directory are linked into the binary.

= IMPORTS IMPORTS_<program>

— List of libraries to link in the programs (or one specific program). Also used by the
PPU programs to embed the SPU linked library.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Directory Layout and Examples of Makefile

= sample
— sample.h

~ Makefle ——

= sample/spu
— Makefile

DIRS = spu ppu
include $(CELL_TOP)/buildutils/make.footer

PROGRAM _ spu = sample_spu

— sample_spu.c

= sample/ppu
— Makefile

— sample.c \ PROGRAM_ppu = sample

7| LIBRARY _embed = lib_sample_spu.a
include $(CELL_TOP)/buildutils/make.footer

IMPORTS = ../spu/lib_sample_spu.a
include $(CELL_TOP)/buildutils/make.footer

3/2/2008

9 Cell Programming Workshop

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Building The Code

= Environment setup

— Set the CELL_TOP environment variable so that the makefile system can be found:
+ export CELL TOP=/opt/cell/sdk/
* make.footer contains the build rules for the makefile system

— Ensure compilers or cross-compilers are in the executable search path

= Separate SPE code and PPE code into different directories
— Each set of code has it's own makefile and toolchain to use
— Suggestion: create a subdirectory called ‘spu’ in the directory where the PPU code is

found
= Makefile template for PPE code:
DIRS = spu

PROGRAM ppu = <PPU executable name>
IMPORTS = <spu executable-embed.a> -lspe2
include $(CELL TOP)/buildutils/make.footer

= Makefile template for SPE code:

PROGRAM spu = <SPU executable name>
LIBRARY embed = <spu executable-embed.a>
include $(CELL TOP)/buildutils/make.footer

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

The “Hello World!” program

11 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Four Different Versions of “Hello World!”

= PPE only
= SPE only

= Synergistic PPE and SPE: synchronous

— One SPE is used.

— Main thread blocks and waits for the SPE code to run to completion
= Synergistic PPE and SPE: asynchronous

— Eight SPEs are used
— Main thread uses pthreads to get concurrent/asynchronous execution

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

“Hello World!” — PPE Only

= PPU program

— just like any “Hello World!” program one would write

#include <stdio.h>

int main(void)
{
printf ("Hello world!\n");

return 0O;

}

Makefile

— make.footer included to set up compiler and compiler flags

— PROGRAM_ppu tells make to use PPC cross-compiler

GROGRAM_ppu tells make to use

PROGRAM ppu = hello ppu ~—

PPC compiler

include $(CELL TOP) /buildutils/make.footer

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

“Hello World!” — SPE Only

= SPU Program

#include <stdio.h>

int main ()

{
printf ("Hello world!\n");

return 0;

= SPU Makefile
PROGRAM spu tells make

to use SPE compiler

PROGRAM spu := hello_spu
include $(CELL_TOP)/buildutils/make.footer

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Synergistic PPE and SPE (SPE Embedded)

= Applications use software constructs called SPE contexts to manage
and control SPEs.

= Linux schedules SPE contexts from all running applications onto the
physical SPE resources in the system for execution according to the

scheduling priorities and policies associated with the runable SPE
contexts.

= libspe provides the means for communication and data transfer
between PPE threads and SPEs.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

How does a PPE program start an SPE thread?

= 4 basic steps must be done by the PPE program

— Create an SPE context.

— Load an SPE executable object into the SPE context local store.

— Run the SPE context. This transfers control to the operating system, which
requests the actual scheduling of the context onto a physical SPE in the
system.

— Destroy the SPE context.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SPE context creation

= spe_context_create - Create and initialize a new SPE context data structure.

#include <libspe2.h>

spe context ptr t spe context create(unsigned int flags,
spe gang context ptr t gang)

— flags - A bit-wise OR of modifiers that are applied when the SPE context
is created.

— gang - Associate the new SPE context with this gang context. If NULL is
specified, the new SPE context is not associated with any gang.

— On success, a pointer to the newly created SPE context is returned.

17 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

spe_program_load

= spe_program_load - Load an SPE main program.

#include <libspe2.h>

int spe program load (spe context ptr t spe,
spe program handle t *program)

— spe - A valid pointer to the SPE context for which an SPE program should
be loaded.

— program - A valid address of a mapped SPE program.

18 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

spe_context run

= spe_context_run - Request execution of an SPE context.

#include <libspe2.h>

int spe context run(spe context ptr t spe, unsigned int *entry,
unsigned int runflags, void *argp, void *envp, spe stop info t
*stopinfo)

spe - A pointer to the SPE context that should be run.

entry - Input: The entry point, that is, the initial value of the SPU instruction
pointer, at which the SPE program should start executing. If the value of
entry is SPE_DEFAULT_ENTRY, the entry point for the SPU main program
is obtained from the loaded SPE image. This is usually the local store
address of the initialization function crtO.

runflags - A bit mask that can be used to request certain specific behavior
for the execution of the SPE context. O indicates default behavior.

argp - An (optional) pointer to application specific data, and is passed as
the second parameter to the SPE program,

envp - An (optional) pointer to environment specific data, and is passed
as the third parameter to the SPE program,

— stopinfo An (optional) pointer to a structure of type spe_ stop _info t

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

spe_context _destroy

= spe_context_destroy - Destroy the specified SPE context.
#include <libspe2.h>

int spe context destroy (spe context ptr t spe)

— spe - Specifies the SPE context to be destroyed

— On success, 0 (zero) is returned, else -1 is returned

20 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

“Hello World!" — PPE and SPE Combined Structure

PPU Executable

= SPU code

— Compiled with SPU specific toolchain
— Object is repackaged as PPC ELF object

— From this point forward normal PPU tools
are used.

= PPU code System Libraries

— Compiled with normal PPU toolchain

= Objects are linked to form a combined
executable.

= At runtime, kernel extensions and
SDK libraries are used to move the
SPU code to an SPU and start the SPU
thread.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

“Hello World!” — Synergistic PPE and SPE (SPE Embedded)

= SPU program
— Same as for SPE only
= SPU Makefile

PROGRAM spu := hello spu
LIBRARY embed := hello spu.a
include $(CELL TOP) /buildutils/make.footer

22 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

“Hello World!” — PPU program

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <libspe2.h>

extern spe program handle_ t hello_spu;

int main (void)
{
spe_context ptr t speid;
unsigned int flags = 0;
unsigned int entry = SPE DEFAULT_ ENTRY;
void * argp = NULL;
void * envp = NULL;
spe_stop_info_t stop_info;

int rc;

// Create an SPE context
speid = spe_context create(flags, NULL);
if (speid == NULL) {
perror ("spe_context create");

return -2;

}

23 Cell Programming Workshop

// Load an SPE executable object into the
SPE context local store

if (spe_program load(speid, &hello_spu))
{

perror ("spe_program load");
return -3;

}

// Run the SPE context

rc = spe_context run(speid, &entry, O,
argp, envp, &stop_info);

if (rc < 0)

perror ("spe_context run");
// Destroy the SPE context

spe_context destroy (speid) ;

return O;

PPU Makefile

DIRS = spu

PROGRAM ppu = hello bel

IMPORTS = spu/hello spu.a -lspe2 -lpthread
include $(CELL TOP) /buildutils/make.footer

3/2/2008 © 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

The IBM Full System Simulator — An Overview

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Simulator Overview

Application Source Code

Development

Programming Tools

Environment: Programming Model OpenMP

Compilers

Software Stack: Executables
Running on Runtime and libraries

SystemSim

SystemSim:
Simulation of
hardware

Disks DMA
Caches (L1/L2)

Linux (Fedora Core 5)

System Software: Hypervisor, Linux/PPC or K42

UART

SystemSim "~
ROM

Int Ctrir

L3

Console Window

[F=
—

o gli e~

T T

2 ot suns ‘ai "

. L

S

s ‘:;1‘ m‘“ﬂ“““‘u.

bcvon e

et Bt ntelxEe | x80-04

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SystemSim Runtime Environment

Create simulator instance
define dup cell mysim

Load kernel boot image
mysim load vmlinux ./vmlinux 0x1000000

Start the GUI
Mambolnit::gui

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SystemSim User Interface

Graphical interface

— Provides a visual display of the state of the simulated system, including the PPE and
the eight (or 16) SPEs

— Includes dialogs to view the contents of the registers, memory, and channels, and
other architectural structures

— Based on Tcl/Tk

— Layered on top of the command line interface

Command line

— Uses Tcl (Tool Control Language) as the base command interpreter
— All the standard Tcl commands are available

— SystemSim commands to configure and create simulated machines
— Commands (e.g. mysim) to control a specific simulated machine

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Operating-System Modes

= Linux Mode
— Simulator boots a full Linux operating system on the simulated system
— Applications are launched from the Linux console window and run
— The simulated operating system handles all the system calls

= Standalone Mode

— The application is loaded directly into the simulated machine without an operating
system

— The simulator traps all system calls made by the application and performs these
functions in place of the operating system

— Some restrictions apply, such as
* The application must be statically linked with any libraries it needs

* No virtual memory support is provided
* Only a subset of system calls are supported

28 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Simulator Structure and Windows

29

Command Window

GUI Window

Console Window

systemsim% [

1 LunEres

| By e g oy N N 5
paagasaaLe,

i

— [user@bringup /|#

A 4

Linux on Simulated Machine

Cell Simulated Machine

IBM Full System Simulator

Linux Operating System

Base processor

Cell Programming Workshop

3/2/2008

Simulated System

Simulator

Base Simulator
Hosting Environment

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Interacting with the Simulator

= Issuing commands to the simulator

— in the simulator command window, or using the equivalent actions in the
graphical user interface (GUI).

— To control the simulator itself, configuring it to do such tasks as collect and
display performance statistics on particular SPEs, or set breakpoints in code.

= Issuing commands to the simulated system

— in the console window which is a Linux shell of the simulated Linux operating
system.

— The simulated system is the Linux environment on top of the simulated cell,
where you run and debug programs.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Starting the Simulator in GUI Interface

The simulator is invoked with the systemsim command “systemsim —g”
— Note: add /opt/ibm/systemsim-cell/bin to your path

Specify the initial run script using —f if configuration is needed

— file should be in the current directory or path qualified

— This configures the simulated machine and prepares it for execution
— The default is .systemsim.tcl

— Samples are provided in the simulator run directory

* Linux mode:
— Jopt/ibm/systemsim-cell/run/cell/linux/systemsim.tcl

Other systemsim options

— -n : do not open a console window

— -q : suppress periodic run statistics messages

— -g : enable the graphical interface

Starting the simulator in GUI mode with two Cell BE (SMP configuration)
— systemsim —g —f config_smp.tcl

Another way to start the simulator

— # cd /opt/ibm/systemsim-cell/run/cell/linux

— #../run_gui

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

SystemSim Cell GUI main panel

systemsim-cell

File ‘Window Help

ED mysim I Icpu j Cycles: 0
B[] EEDO 1
B PREDD Adwance Cyele Amount : II I_I_I

d-] PPED: |

SPED Advance Cycle

Go Stop Service GDBE

SFE1 TriggersfBreakpoints |
SFE2 |
| Fr

SPE3 Ernitters Fast Maode SFPU Modes SPE Misualization

SFPE4 Process-Tree
SFES

SFEG

SFE?
Loac-EIf-App
Load-Elf-Kernel
Memory Map

Update GLI | Debug Controls | Options

Ocess- Tree-oiats Track Al FC=

Ewvent Log

Exit

E

a8
E
8

SystemMemary

DODDLDODDD=0000D00DD0EDD

D Load-Elf-App
[] Load-Elf-Kernel

|:| Memory Map
B #ystembdemory

|

Funking Sialed Halted

32 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Basic Simulator operations

i, systemsim-cell

Setvice GDE |

Options |

SPE Visualization

Ewvent Log

33 Cell Programming Workshop

File Wincow
E||:| i I | j Cyeles: 0
E-(1 BEO 1

E-(] FFEDD (]
B[] PPED:
E-(] SPEO .
I:l SFE1 Trigyer s/Breakpoints | Update GLI | Debuy Controls |
-1 sPE2 _
i Emitters | Fast Modle | SPU Modes |
-] SPE3
|:| SFE4 Frocess-Tree | Frocess-Tree-Stats | Track &l FCs |
E-(] SPES
E-(] SPEG
E-(] SPE?
o] Load-Elf-8pp
o[Load-Elf-Kernel
o MemoryMap

3/2/2008 © 2007 IBM Corporation

B-L1 mysim

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

The PPE

B-E PPECO

PCTrack.
PRCZCaore
5PRegs
FPReg
PCAddre

B PPED:1

mysim/PPEQ:0: GPRs

ing

v

GEE

MEER 3000000000001032
CR 22000088

PC cO00000000033244
LE cO0000000002326C

0 000o0oo0e0a0aono
1 c00o00o0o0272n70
2 c00onooonn2711ce
3 cO0000o0001E9ES0
4 cO0oopo0D0iFEEnD
S 0000000000a00sED
E 000ODDO022000022
7 cO0000000000EASD

B4,

,ME,IE,DE, I

FUEE S 4
¥, 0x80(x3)

cO0000000000520ES

XEER 0000000020000000

aooopoooQoooaoon 16 000O0QO00O000a000
cooooooooozzooon 17 000oooooooooooon
anooooonno2asenn 18 0000000000000000
anoonoooaoanoooon 15 0000000000000000
aoooooonzeoooods 20 00000ooooaoooono

cO00000000O1lFEESD 21

oooooooooaoooonon

aooopooooonoooon 22 00000000FQ000000
aooopoooooooooon 23 40000000031000000

cOo0po000olFEESD
Qoooooooooooonen
anonooonooononon
coonooonnoononan
Qnoopo0D07FFFEED
cooopoonoozacnis
cooopoonooznzaes
aoooooonoasaanon

mysim/PPEQ:0: FPRs

o]
o
o=
=D 00] O L R e

Hooooooo o

[y

.75

Ox3FFO000000000000
Ox3FFCO00000000000
0x0000000000000000
Ox0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
Ox0000000000000000
0x0000000000000000
0x0000000000000000
Ox7FFO000000000000

11 -TIHF

2

(g
o
Lo N B e o B o e e e e I e

OxFFFO000000000000
0x0000000000000000
0x0000000000000000
0x7FF2000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000

o e e e e e e)

20 0.70710677
31 -0.70710677

0x0000000000000000
x0000000000000000
0x0000000000000000
Ox0000000000000000
0x0000000000000000
x0000000000000000
0x0000000000000000
Ox0000000000000000
Ox3FEGANIEEOOO0000
OxXEFEEAQSEEQOO0000

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

The PPE

PCTrack
PPCCore
5PRegs
FPRegs
PCAddressing
E-E3 PPED:]

mysim/PPEQ:0: Core
00000000 00FE 9TF 34

D 00000000FFATA700
0x00000000F 7FE?480
Ox000000000FEASESF
0x0000000001ATEEE 2
0x000000000FESDF 34
Dx00000000FFATA788
0x00000000F 200FESD
Oz 000000001000018¢
0x0000000000000230
0x000000001001777¢
Dz 0000000000000000
000000004 800244 8
Oz 0000000000000000
Oz 0000000000000000
0x0000000001A7EEE 2
0x00000000100006F
Ox0000000000000000
0x00000000F 7FE1898
Oz 0000000000000000
Ox0000000000000003
Ox0oogopopopopooon
0x00000000100003¢82
0x0000000010000318
Ox00000000F 7FE1898
Ox0000000000000012
Ox00o0opooopopooon
0x00000000F 7FE17ES
0x00000000100005A8
O 00000000F 200FCF &
Oz 00000000F Z00F00%
Ox0000000000000023

Oz 0000000oooooooon

0z 0000000000000000
0x0000000000000000
0x0000000000000000
0z 0000000000000000
Oz 0000000oooooooon
0z 0000000000000000
0x0000000000000000
Ox0000000000000000
0z 0000000000000000
Ox000000000000o00n
0z 0000000000000000
0x0000000000000000
Ox0000000000000000
0x0000000000000000
Ox000000000000o00n
Oz 0000000oooooooon
0x0000000000000000
0x0000000000000000
0x0000000000000000
0z 0000000000000000
Oz 0000000oooooooon
0z 0000000000000000
0x0000000000000000
Ox0000000000000000
0z 0000000000000000
Ox000000000000o00n
0z 0000000000000000
0x0000000000000000
Ox0000000000000000
0x0000000000000000
Ox000000000000o00n

=

THXED

THXE]
THXE2
TR
TR
THLRS
THXEE
THXER?
THMHES
TR
THAR10
THXE11
THXR12
WHHE13
TR 14
THER1E
THER1E
THXER17
THMXER18
TRl
THHERE D
THEEZ1
THXERZ2
THMXRZ3
THHE24
THHEREE
THERZE
THXERZT
THMXRZE
THMHERZ S
TR0
THERE1

0z 00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0z 00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0 00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0 00000000000000000000000000000000
0z 00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0z 00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0 00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0x00000000000000000000000000000000
0 00000000000000000000000000000000

EFVE

DCTIDRD
DCIDR1
DEHEQD
DERKEL
DESER0D
DRSR1
ICIDRO
ICIDR1
IRKED
IRKED
IRSRO
IRSR1
PUERE.
SCOMG
FCOMD
TDAEE:
TDAERX
TIABER
TLE_RH

TLE_inde: |0x0000000000000000
TLE_inde: |0x0000000000000528

TLE_rp:
TLE_wp:
TEACE
accr
asr
(=
ctr
chrl
ctrl

i |dabxc

Ox0000000000000000 tK
0x0000000000000000
0x0000000000000000
Ox0000000000000000
Ox0000000000000000
Ox0000000000000000
0x0000000000000000
0x0000000000000000
Ox0000000000000000
Ox0000000000000000
Ox0000000000000000
0x0000000000000000
0x0000000000000000
Ox0000000000000000
Ox0000000000000000
Ox0000000000000000
Ox0000000000000000
0x0000000000000000
0x0000000000000000
T |0x0000000000000000

. |0x0000000000000000
m |0x0000000000000000
Ox0000000000000000
Ox0000000000000000
Ox0000000000000000
D284 24442

0x0000000000000000
Ox20800000

OxE0800000

Ox0000000000000000

Cell Programming Workshop

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

The SPU

mysim/SPEQ: PC Tracker

00000100 : 40FES802 - . il 32,-752
00000104 : 24004080 : @% . stgd 30,16(%1)
=-(1 SPEOD 00000108 : 40S00FFF : @** : il $127,31
0000010c : 24F44081 . §F@F . stgd §1,-752(31
-1 SPUTrack 00000410 : 13008081 - b : A g1,§1:$2 e
00000114 : FFE10203 : 2FFF . rotgbpi $3, 44,4
L1 SPUCore 00000118 : 4080207E : @ ~ : il 5126, 64
- MFC 0000011c : 40800c05 . @ FF . il 35,23
00000120 : 1c300082 . *0%* . ai 2241, 142
- MFC_XlLate 00000124 ; 40ED00TD : il §125,0
] SPEChannel
mysim/SPEQ: Channels
O LSstas T J 2
-1 SPUMemo EF | DOOO0000 0| 0 Fead Event Status (RE) EF 1| 16 DA Local Storage Address (W)
ry
g ;Pisltats 1 BF | Do0ooaoo [1] 1 Write Event Wask (W) 6P EEEEEEEN |1 17 DM Effective Address High (W)
odelinstruction |
(] Load—Exec o 6P [EEEBESOEN |1 2 'write Event Acknowledgment (W) . 6P [EEBEBOEN |1 15 DM Effective Address Low (W)
) o oP [EEEOESEEN |1 19 DMA Transter Size (W) B |
_1 BF | oooooooo [0 3 Signal Notification 1 (RE

1 BP | 00000000 | 1| 20 DMa Command Tag 1D (W)
wr | I8l =1 oM Command Opcode / Class 1D (WE)

I EF triggered; PC=0000010C:21 AD0452 wrch $rnfo_cmd_gueue, $2

i BP | oooooooo @ 4 Signal Motification 2 (RE3

L BP (00000000 [1] 7 Write Decrementer (W)
1 BF | 00000000 | |1 & Rear! Decrementer (R 1 BF | 00000000 | | 1] 23 White Tag Status Undate Request (WE

1 BF | 00000000 | [0 24 Read Tag-Group Status (RE)

1 BF | 00000000 | | 1| @ Wit Multisource Syric. Recuest (WE) | 4 BP | 00000000 | | 0| 25 Rear! List Stall-ancl-hlotify Tag Status (RE)
1 BF | 00000000 | [1] 11 Fiead Event Mask (R} 1 BF | 00000000 | [1] 26 wwiite List Stall-anc-Natify Tag Ack. (W)

1 BP | 00000000 | [1] 12 Fiead Tagr Group Guery Mask (R} 1 BP | 00000000 | [0 27 Read Atomic Command Status (R)

1 BF | 00000000 | [1] 13 Riead Mackine Status (F) 1 BF | 00000000 | 1] 28 wirite Dutbound Mailba: (WE)

o BF'I *00000000 v |0 29 Read Inbaund Mailkbox (R)
1 BF | 00000000 m 30 Write Outhound Interrupt Mailbox (8BS

-1 BF | 00000000 m 14 ‘Write State Save-and-Restare %)

Status | not stalled
_1 BF | oooooooo [1] 15 Riead State Save-and-Restore ()

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Simulator Modes — fast, simple, and cycle

= The default simulation mode when the simulator starts is
“simple”, or functional-only, simulation

— In this mode, the time / cycles to execute an application is NOT a meaningful
indicator of execution time on real hardware

* To get meaningful performance results:
— Select “Cycle” mode on the GUI

— Enter “mysim mode cycle” in the command window

= This will make the simulator run slower
— Depending on the workload, simulation time could increase by 10x to 100x

— But you can switch between modes as needed, so you can limit this
overhead to just the relevant portions of the simulation

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

How to Exchange Files between Host and Simulator

= callthru
— A command issued from a simulated windows (from the simulator)

— “pbackdoor” communication mechanism for the simulated environment to communicate
with the host environment

— Useful for bringing in files to the simulated environment without shutting down and
restarting the simulator

— Example: (binary host = simulator)
« callthru source /opt/cell _class/Hands-on-30/hello/hello_ppu/hello_ppu > hello_ppu
* chmod 755 hello_ppu
« ./hello_ppu

— Example (result file simulator - host)

« callthru sink /home/systemsim-cell/results/result_file < cat result_file
+ exporting result files out of the simulated environment for later inspection

38 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Execute Binary

39

= From the simulated windows, bring executable into the simulator by

using the callthru utility, e.g.,

— callthru source /opt/cell_class/Hands-on-30/hello/hello _ppu/hello_ppu

> hello_ppu

= Execute binary
— chmod 755 hello_ppu
— ./hello_ppu

Cell Programming Workshop

Tip!
Copy binary to /tmp/’<exe> on
host to shorten the filename

3/2/2008 © 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Building three types of the hello world! program

40 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Directory Structure

fopt/cell_class/Hands-on-30/hello

= hello_ppu
= hello_spu
= hello_be1 synchronous spu thread (hello_be1-sync)
— spu
= hello_be1 asynchronous spu thread (hello_be1-async)

— spu

Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on Exercise

1. Create a directory hello_ppu, write a hello world ppu program and create a
Makefile, then compile and execute it as a standalone ppu program

2. Create a directory hello_spu, write a hello world spu program and create a
Makefile, then compile and execute it as a standalone spu program

3. Create a directory hello_be1, and write a ppu program that calls an spu
program to write hello world in a synchronous manner. Create all ppu and
spu makefiles. Compile and execute those programs to demonstrate the
basic structure of a simple PPE-SPE software synergy model (PPE-single
SPE model)

Same as in 3. but with asynchronous thread

5. Producing a simple multi-threaded hello world program
= See instructions in the next page

Need to compile (use make) and run the
executables on the simulator

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on — multi-threaded hello world

To produce a simple program for the CBE, you should follow the steps listed below (this example is included in the
SDK in /opt/cell/sdk/src/tutorial/simple).

The project is called simple. For this example, the PPE code will be built in the project directory, instead of a ppu sub-
directory.

This program creates SPE threads that output “Hello Cell (#)\n” to the systemsim output window, where # is the spe_id
of the SPE thread that issued the print.

1. Create a directory named simple.

2. In directory simple, create a file named Makefile using the following code:
HHHHH R R R R R R R R R R R R R R R R R R
Subdirectories

HHH R R R R R R R R R R R R
DIRS := spu

HHH R R R R R R R R R R R R
Target

HHH B R R R R R R
PROGRAM_ppu := simple

HH R R R R
Local Defines

HHHHH R R R R R R R R R R R R R R R R R R R

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on — multi-threaded hello world (cont’'d)

IMPORTS := spu/lib_simple_spu.a -Ispe2 -Ipthread

imports the embedded simple_spu library

allows consolidation of spu program into ppe binary

HHHH R R R R
make.footer

HHH R R R R R R
make.footer is in the top of the SDK

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

Endif

3. In directory simple, create a file simple.c using the following code:
#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <libspe2.h>

#include <pthread.h>

44 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on — multi-threaded hello world (cont’d)

extern spe_program_handle_t simple_spu;
#define MAX_SPU_THREADS 16

void *ppu_pthread_function(void *arg) {
spe_context ptr_t ctx;

unsigned int entry = SPE_DEFAULT_ENTRY;
ctx = *((spe_context_ptr_t *)arg);

if (spe_context_run(ctx,&entry, 0, NULL, NULL, NULL) < 0) {
perror ("Failed running context");

exit (1);

}

pthread_exit(NULL);

}

int main()

{

int i,spu_threads;

spe_context ptr_t ctxs[MAX_SPU_THREADS];
pthread_t threads[]MAX_SPU_THREADS];

45 Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on — multi-threaded hello world (cont’d)

[* Determine the number of SPE threads to create */

spu_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);
if (spu_threads > MAX_SPU_THREADS) spu_threads = MAX_SPU_THREADS;
/* Create several SPE-threads to execute 'simple_spu’ */

for(i=0; i<spu_threads; i++) {

/* Create context */

if ((ctxs[i] = spe_context_create (0, NULL)) == NULL) {

perror ("Failed creating context");

exit (1);

}

/* Load program into context */

if (spe_program_load (ctxs[i],&simple_spu)) {

perror ("Failed loading program");

exit (1);

}

/* Create thread for each SPE context */

if (pthread_create (&threads]i], NULL,&ppu_pthread_function,&ctxs]i])) {

perror ("Failed creating thread");
exit (1);
}

46

Cell Programming Workshop 3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on — multi-threaded hello world (cont’d)

/* Wait for SPU-thread to complete execution. */
for (i=0; i<spu_threads; i++) {

if (pthread_join (threads]i], NULL)) {
perror("Failed pthread_join");

exit (1);

}

}

printf("\nThe program has successfully executed.\n");

return (0);

}
4. Create a directory named spu.

Cell Programming Workshop

3/2/2008

© 2007 IBM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on — multi-threaded hello world (cont’d)

5. In the directory spu, create a file named Makefile using the following code:
R R R R R R R R R R R R
Target

R R R R
PROGRAMS _spu := simple_spu

created embedded library

LIBRARY_embed := lib_simple_spu.a

R R R R
make.footer

R R R R R R R
make.footer is in the top of the SDK

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../../buildutils/make.footer

endif

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Hands-on — multi-threaded hello world (cont’d)

6. In the same directory, create a file simple_spu.c using the following code:
#include <stdio.h>

int main(unsigned long long id)

{

[* The first parameter of an spu program will always be the spe_id of the spe

* thread that issued it.

*/

printf("Hello Cell (0x%IIx)\n", id);

return O;

}

7. Compile the program by entering the following command at the command line while in the
simple directory:

make

49 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Summary

= Compile and execute different types of cell programs on the simulator
— Understand the basic differences between a ppu, spu, and BE program
— Understand the embedded concept of a cellBE program
— Understand the build process
— Understand the contents of different Makefile

— Understand the basic operations of the simulator

3/2/2008 © 2007 IBM Corporation

50 Cell Programming Workshop

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Special Notices -- Trademarks

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in
other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained
in this document.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY
10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or
guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations
and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions
worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal
without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.
All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Many of the features described in this document are operating system dependent and may not be available on Linux. For more information,
please check: http://www.ibm.com/systems/p/software/whitepapers/linux_overview.html

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this
document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised January 19, 2006
Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Special Notices (Cont.) -- Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: alphaWorks, BladeCenter,
Blue Gene, ClusterProven, developerWorks, e business(logo), e(logo)business, e(logo)server, IBM, IBM(logo), ibm.com, IBM Business Partner (logo),
IntelliStation, MediaStreamer, Micro Channel, NUMA-Q, PartnerWorld, PowerPC, PowerPC(logo), pSeries, TotalStorage, xSeries; Advanced Micro-
Partitioning, eServer, Micro-Partitioning, NUMACenter, On Demand Business logo, OpenPower, POWER, Power Architecture, Power Everywhere, Power
Family, Power PC, PowerPC Architecture, POWER5, POWER5+, POWERG6, POWERG6+, Redbooks, System p, System p5, System Storage, VideoCharger,
Virtualization Engine.

A full list of U.S. trademarks owned by IBM may be found at:

Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. in the United States, other countries,
or both.

Rambus is a registered trademark of Rambus, Inc.

XDR and FlexIO are trademarks of Rambus, Inc.

UNIX is a registered trademark in the United States, other countries or both.

Linux is a trademark of Linus Torvalds in the United States, other countries or both.

Fedora is a trademark of Redhat, Inc.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.

Intel, Intel Xeon, ltanium and Pentium are trademarks or registered trademarks of Intel Corporation in the United States and/or other countries.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and
SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).

AltiVec is a trademark of Freescale Semiconductor, Inc.

PCI-X and PCI Express are registered trademarks of PCI SIG.

InfiniBand™ is a trademark the InfiniBand® Trade Association

Other company, product and service names may be trademarks or service marks of others.

Revised July 23, 2006

52 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

IBM Systems & Technology Group — Cell/Quasar Ecosystem & Solutions Enablement

Special Notices - Copyrights

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com
53 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation

