
IBM Systems & Technology Group
Cell/Quasar Ecosystem & Solutions Enablement

Cell Programming Workshop 3/2/2008 © 2007 IBM Corporation1

Hands-on – The Hello World! Program

Cell Programming Workshop
Cell/Quasar Ecosystem Solutions Enablement

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20082

Class Objectives

You will learn how to write, build and run “Hello World!” on the Cell System
Simulator

Navigate through the basic build process and make files

Familiarize with gcc and xlc compilers

Familiarize with the system simulator

There are three different versions of “Hello World!” used in this session
– PPE only,

– SPE only, and

– Cell BE, i.e. using both PPE and SPE
• Synchronous
• Asynchronous

Trademarks - Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20083

How to build, compile and execute the “Hello World!” program
Pre-requisites
– Toolchain
– Compiler
Build Process
Source Code
– Makefiles
– Source PPE
– Source SPE
Simulator
– Getting the binary into the simulator
– Running the binary

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20084

The build process

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20085

Cell BE
Executable

Build Process

SPE Code SPE
Toolchain

SPE
Objects

Embed
Utility

PPE Obj

PPE Code PPE
Toolchain

PPE
Objects

PPE
Toolchain
(Linker)

SPE Code

SPE
Code

PPE Code

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20086

SDK 3.0 Makefile

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20087

Compiling within the SDK
Top of build environment is /opt/cell/sdk/

Includes the build environment files
– README_build_env.txt

• Provides details on the build environment features, including files, structure and
variables.

– make.footer
• Specifies all of the build rules needed to properly build CBEA binaries
• Must be included in all SDK Makefiles (referenced relatively if $CELL_TOP is not

defined)
• Includes make.header

– make.header
• Specifies definitions needed to process the Makefiles
• Includes make.env

– make.env
• Specifies the default compilers and tools to be used by make

make.footer and make.header should not be modified

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20088

Common Makefile variables
DIRS
– list of subdirectories to build first
PROGRAM_ppu PROGRAMS_ppu
– 32-bit PPU program (or list of programs) to build.
PROGRAM_ppu64 PROGRAMS_ppu64
– 64-bit PPU program (or list of programs) to build.
PROGRAM_spu PROGRAMS_spu
– SPU program (or list of programs) to build.
– If written as a standalone binary, can run without being embedded in a PPU program.
LIBRARY_embed LIBRARY_embed64
– Creates a linked library from an SPU program to be embedded into a 32-bit or 64-bit

PPU program.
OBJS OBJS_<program>
– List of objects for the programs (or one specific program). By default, all objects in the

current directory are linked into the binary.
IMPORTS IMPORTS_<program>
– List of libraries to link in the programs (or one specific program). Also used by the

PPU programs to embed the SPU linked library.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/20089

Directory Layout and Examples of Makefile

sample
– sample.h
– Makefile

sample/spu
– Makefile
– sample_spu.c

sample/ppu
– Makefile
– sample.c

DIRS = spu ppu

include $(CELL_TOP)/buildutils/make.footer

PROGRAM_spu = sample_spu

LIBRARY_embed = lib_sample_spu.a

include $(CELL_TOP)/buildutils/make.footer

PROGRAM_ppu = sample

IMPORTS = ../spu/lib_sample_spu.a

include $(CELL_TOP)/buildutils/make.footer

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200810

Building The Code

Environment setup
– Set the CELL_TOP environment variable so that the makefile system can be found:

• export CELL_TOP=/opt/cell/sdk/
• make.footer contains the build rules for the makefile system

– Ensure compilers or cross-compilers are in the executable search path

Separate SPE code and PPE code into different directories
– Each set of code has it’s own makefile and toolchain to use
– Suggestion: create a subdirectory called ‘spu’ in the directory where the PPU code is

found

Makefile template for PPE code:
DIRS = spu
PROGRAM_ppu = <PPU_executable_name>
IMPORTS = <spu_executable-embed.a> -lspe2
include $(CELL_TOP)/buildutils/make.footer

Makefile template for SPE code:
PROGRAM_spu = <SPU_executable_name>
LIBRARY_embed = <spu_executable-embed.a>
include $(CELL_TOP)/buildutils/make.footer

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200811

The “Hello World!” program

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200812

Four Different Versions of “Hello World!”

PPE only

SPE only

Synergistic PPE and SPE: synchronous
– One SPE is used.

– Main thread blocks and waits for the SPE code to run to completion

Synergistic PPE and SPE: asynchronous
– Eight SPEs are used

– Main thread uses pthreads to get concurrent/asynchronous execution

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200813

“Hello World!” – PPE Only
PPU program
– just like any “Hello World!” program one would write

Makefile
– make.footer included to set up compiler and compiler flags

– PROGRAM_ppu tells make to use PPC cross-compiler

#include <stdio.h>

int main(void)
{

printf("Hello world!\n");
return 0;

}

PROGRAM_ppu = hello_ppu
include $(CELL_TOP)/buildutils/make.footer

PROGRAM_ppu tells make to use
PPC compiler

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200814

“Hello World!” – SPE Only

SPU Program

SPU Makefile

#include <stdio.h>

int main()
{

printf("Hello world!\n");
return 0;

}

PROGRAM_spu := hello_spu
include $(CELL_TOP)/buildutils/make.footer

PROGRAM_spu tells make
to use SPE compiler

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200815

Synergistic PPE and SPE (SPE Embedded)

Applications use software constructs called SPE contexts to manage
and control SPEs.

Linux schedules SPE contexts from all running applications onto the
physical SPE resources in the system for execution according to the
scheduling priorities and policies associated with the runable SPE
contexts.

libspe provides the means for communication and data transfer
between PPE threads and SPEs.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200816

How does a PPE program start an SPE thread?

4 basic steps must be done by the PPE program

– Create an SPE context.

– Load an SPE executable object into the SPE context local store.

– Run the SPE context. This transfers control to the operating system, which
requests the actual scheduling of the context onto a physical SPE in the
system.

– Destroy the SPE context.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200817

SPE context creation

spe_context_create - Create and initialize a new SPE context data structure.
#include <libspe2.h>

spe_context_ptr_t spe_context_create(unsigned int flags,
spe_gang_context_ptr_t gang)

– flags - A bit-wise OR of modifiers that are applied when the SPE context
is created.

– gang - Associate the new SPE context with this gang context. If NULL is
specified, the new SPE context is not associated with any gang.

– On success, a pointer to the newly created SPE context is returned.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200818

spe_program_load

spe_program_load - Load an SPE main program.
#include <libspe2.h>

int spe_program_load (spe_context_ptr_t spe,
spe_program_handle_t *program)

– spe - A valid pointer to the SPE context for which an SPE program should
be loaded.

– program - A valid address of a mapped SPE program.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200819

spe_context_run

spe_context_run - Request execution of an SPE context.
#include <libspe2.h>

int spe_context_run(spe_context_ptr_t spe, unsigned int *entry,
unsigned int runflags, void *argp, void *envp, spe_stop_info_t
*stopinfo)

– spe - A pointer to the SPE context that should be run.
– entry - Input: The entry point, that is, the initial value of the SPU instruction

pointer, at which the SPE program should start executing. If the value of
entry is SPE_DEFAULT_ENTRY, the entry point for the SPU main program
is obtained from the loaded SPE image. This is usually the local store
address of the initialization function crt0.

– runflags - A bit mask that can be used to request certain specific behavior
for the execution of the SPE context. 0 indicates default behavior.

– argp - An (optional) pointer to application specific data, and is passed as
the second parameter to the SPE program,

– envp - An (optional) pointer to environment specific data, and is passed
as the third parameter to the SPE program,

– stopinfo An (optional) pointer to a structure of type spe_stop_info_t

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200820

spe_context_destroy

spe_context_destroy - Destroy the specified SPE context.
#include <libspe2.h>

int spe_context_destroy (spe_context_ptr_t spe)

– spe - Specifies the SPE context to be destroyed

– On success, 0 (zero) is returned, else -1 is returned

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200821

“Hello World!” – PPE and SPE Combined Structure

SPU code
– Compiled with SPU specific toolchain

– Object is repackaged as PPC ELF object

– From this point forward normal PPU tools
are used.

PPU code
– Compiled with normal PPU toolchain

Objects are linked to form a combined
executable.

At runtime, kernel extensions and
SDK libraries are used to move the
SPU code to an SPU and start the SPU
thread.

PPU code
(hello.o)

SPU code
(hello_spu.o)

PPU Executable

System Libraries

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200822

“Hello World!” – Synergistic PPE and SPE (SPE Embedded)

SPU program
– Same as for SPE only

SPU Makefile

PROGRAM_spu := hello_spu
LIBRARY_embed := hello_spu.a
include $(CELL_TOP)/buildutils/make.footer

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200823

“Hello World!” – PPU program
#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <libspe2.h>

extern spe_program_handle_t hello_spu;

int main(void)

{

spe_context_ptr_t speid;

unsigned int flags = 0;

unsigned int entry = SPE_DEFAULT_ENTRY;

void * argp = NULL;

void * envp = NULL;

spe_stop_info_t stop_info;

int rc;

// Create an SPE context

speid = spe_context_create(flags, NULL);

if (speid == NULL) {

perror("spe_context_create");

return -2;

}

// Load an SPE executable object into the
SPE context local store

if (spe_program_load(speid, &hello_spu))
{

perror("spe_program_load");

return -3;

}

// Run the SPE context

rc = spe_context_run(speid, &entry, 0,
argp, envp, &stop_info);

if (rc < 0)

perror("spe_context_run");

// Destroy the SPE context

spe_context_destroy(speid);

return 0;

}

DIRS = spu
PROGRAM_ppu = hello_be1
IMPORTS = spu/hello_spu.a –lspe2 -lpthread
include $(CELL_TOP)/buildutils/make.footer

PPU Makefile

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200824

The IBM Full System Simulator – An Overview

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200825

Intel x86

Simulator Overview

SystemSim
PowerPC

Caches (L1/L2)
Memory

ROM

Executables

UART

L3
Int Ctrlr

PowerPC x86-64

Runtime and libraries

PowerPCPowerPCBE
Bus

Linux (Fedora Core 5)

System Software: Hypervisor, Linux/PPC or K42

Real Systems:

SystemSim:
Simulation of
hardware

Software Stack:
Running on
SystemSim

DMADisks

Console Window

GUI Windows

Application Source Code

Programming Tools

Compilers

Programming Model OpenMP MPI
Development
Environment:

Traces

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200826

SystemSim

SystemSim Runtime Environment

tcl/tk/blt/mambo cmds

TCL/Tk/BLT
GUI Scripts

4

1Startup TCL File
(.systemsim.tcl)

Create simulator instance
define dup cell mysim

Load kernel boot image
mysim load vmlinux ./vmlinux 0x1000000

Start the GUI
MamboInit::gui

unix $ PATH=/opt/IBM/systemsim-cell/bin:$PATH systemsim -g
GUI Enabled
Licensed Materials – Property of IBM.
© Copyright IBM Corporation 2001, 2006
All Rights Reserved
%

5

Kernel
Boot Image
(vmlinux)

3

Disk Image
(sysroot_disk)

Network
Service
Daemon

mysim (cell model)

console
ROM

net modelcpu model
memory

2

disk model

ROM
Image

(rom.bin)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200827

SystemSim User Interface

Graphical interface
– Provides a visual display of the state of the simulated system, including the PPE and

the eight (or 16) SPEs
– Includes dialogs to view the contents of the registers, memory, and channels, and

other architectural structures
– Based on Tcl/Tk
– Layered on top of the command line interface

Command line
– Uses Tcl (Tool Control Language) as the base command interpreter
– All the standard Tcl commands are available
– SystemSim commands to configure and create simulated machines
– Commands (e.g. mysim) to control a specific simulated machine

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200828

Operating-System Modes
Linux Mode
– Simulator boots a full Linux operating system on the simulated system
– Applications are launched from the Linux console window and run
– The simulated operating system handles all the system calls
Standalone Mode
– The application is loaded directly into the simulated machine without an operating

system
– The simulator traps all system calls made by the application and performs these

functions in place of the operating system
– Some restrictions apply, such as

• The application must be statically linked with any libraries it needs
• No virtual memory support is provided
• Only a subset of system calls are supported

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200829

Simulator Structure and Windows

Command Window

systemsim%

Console WindowGUI Window

Base processor

Linux Operating System

IBM Full System Simulator
Cell Simulated Machine

Linux on Simulated Machine

Simulator

Simulated System

Base Simulator
Hosting Environment

[user@bringup /]#

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200830

Interacting with the Simulator

Issuing commands to the simulator
– in the simulator command window, or using the equivalent actions in the

graphical user interface (GUI).

– To control the simulator itself, configuring it to do such tasks as collect and
display performance statistics on particular SPEs, or set breakpoints in code.

Issuing commands to the simulated system
– in the console window which is a Linux shell of the simulated Linux operating

system.

– The simulated system is the Linux environment on top of the simulated cell,
where you run and debug programs.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200831

Starting the Simulator in GUI Interface
The simulator is invoked with the systemsim command “systemsim –g”
– Note: add /opt/ibm/systemsim-cell/bin to your path
Specify the initial run script using –f if configuration is needed
– file should be in the current directory or path qualified
– This configures the simulated machine and prepares it for execution
– The default is .systemsim.tcl
– Samples are provided in the simulator run directory

• Linux mode:
– /opt/ibm/systemsim-cell/run/cell/linux/systemsim.tcl

Other systemsim options
– -n : do not open a console window
– -q : suppress periodic run statistics messages
– -g : enable the graphical interface
Starting the simulator in GUI mode with two Cell BE (SMP configuration)
– systemsim –g –f config_smp.tcl
Another way to start the simulator
– # cd /opt/ibm/systemsim-cell/run/cell/linux
– #../run_gui

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200832

SystemSim Cell GUI main panel

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200833

Basic Simulator operations

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200834

The PPE

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200835

The PPE

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200836

The SPU

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200837

Simulator Modes – fast, simple, and cycle

The default simulation mode when the simulator starts is
“simple”, or functional-only, simulation
– In this mode, the time / cycles to execute an application is NOT a meaningful

indicator of execution time on real hardware

To get meaningful performance results:
– Select “Cycle” mode on the GUI

– Enter “mysim mode cycle” in the command window

This will make the simulator run slower
– Depending on the workload, simulation time could increase by 10x to 100x

– But you can switch between modes as needed, so you can limit this
overhead to just the relevant portions of the simulation

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200838

How to Exchange Files between Host and Simulator

callthru
– A command issued from a simulated windows (from the simulator)

– “backdoor” communication mechanism for the simulated environment to communicate
with the host environment

– Useful for bringing in files to the simulated environment without shutting down and
restarting the simulator

– Example: (binary host simulator)
• callthru source /opt/cell_class/Hands-on-30/hello/hello_ppu/hello_ppu > hello_ppu
• chmod 755 hello_ppu
• ./hello_ppu

– Example (result file simulator host)
• callthru sink /home/systemsim-cell/results/result_file < cat result_file
• exporting result files out of the simulated environment for later inspection

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200839

Execute Binary

From the simulated windows, bring executable into the simulator by
using the callthru utility, e.g.,
– callthru source /opt/cell_class/Hands-on-30/hello/hello_ppu/hello_ppu

> hello_ppu

Execute binary
– chmod 755 hello_ppu
– ./hello_ppu

Tip!
Copy binary to /tmp/´<exe> on
host to shorten the filename

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200840

Building three types of the hello world! program

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200841

Directory Structure

/opt/cell_class/Hands-on-30/hello

hello_ppu

hello_spu

hello_be1 synchronous spu thread (hello_be1-sync)

– spu

hello_be1 asynchronous spu thread (hello_be1-async)

– spu

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200842

Hands-on Exercise

1. Create a directory hello_ppu, write a hello world ppu program and create a
Makefile, then compile and execute it as a standalone ppu program

2. Create a directory hello_spu, write a hello world spu program and create a
Makefile, then compile and execute it as a standalone spu program

3. Create a directory hello_be1, and write a ppu program that calls an spu
program to write hello world in a synchronous manner. Create all ppu and
spu makefiles. Compile and execute those programs to demonstrate the
basic structure of a simple PPE-SPE software synergy model (PPE-single
SPE model)

4. Same as in 3. but with asynchronous thread

5. Producing a simple multi-threaded hello world program
See instructions in the next page

Need to compile (use make) and run the
executables on the simulator

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200843

Hands-on – multi-threaded hello world
To produce a simple program for the CBE, you should follow the steps listed below (this example is included in the
SDK in /opt/cell/sdk/src/tutorial/simple).

The project is called simple. For this example, the PPE code will be built in the project directory, instead of a ppu sub-
directory.

This program creates SPE threads that output “Hello Cell (#)\n” to the systemsim output window, where # is the spe_id
of the SPE thread that issued the print.

1. Create a directory named simple.

2. In directory simple, create a file named Makefile using the following code:

##

Subdirectories

##

DIRS := spu

##

Target

##

PROGRAM_ppu := simple

##

Local Defines

##

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200844

Hands-on – multi-threaded hello world (cont’d)

IMPORTS := spu/lib_simple_spu.a -lspe2 -lpthread

imports the embedded simple_spu library

allows consolidation of spu program into ppe binary

##

make.footer

##

make.footer is in the top of the SDK

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

Endif

3. In directory simple, create a file simple.c using the following code:
#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <libspe2.h>

#include <pthread.h>

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200845

Hands-on – multi-threaded hello world (cont’d)

extern spe_program_handle_t simple_spu;

#define MAX_SPU_THREADS 16

void *ppu_pthread_function(void *arg) {

spe_context_ptr_t ctx;

unsigned int entry = SPE_DEFAULT_ENTRY;

ctx = *((spe_context_ptr_t *)arg);

if (spe_context_run(ctx,&entry, 0, NULL, NULL, NULL) < 0) {

perror ("Failed running context");

exit (1);

}

pthread_exit(NULL);

}

int main()

{

int i,spu_threads;

spe_context_ptr_t ctxs[MAX_SPU_THREADS];

pthread_t threads[MAX_SPU_THREADS];

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200846

Hands-on – multi-threaded hello world (cont’d)
/* Determine the number of SPE threads to create */

spu_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);

if (spu_threads > MAX_SPU_THREADS) spu_threads = MAX_SPU_THREADS;

/* Create several SPE-threads to execute ’simple_spu’ */

for(i=0; i<spu_threads; i++) {

/* Create context */

if ((ctxs[i] = spe_context_create (0, NULL)) == NULL) {

perror ("Failed creating context");

exit (1);

}

/* Load program into context */

if (spe_program_load (ctxs[i],&simple_spu)) {

perror ("Failed loading program");

exit (1);

}

/* Create thread for each SPE context */

if (pthread_create (&threads[i], NULL,&ppu_pthread_function,&ctxs[i])) {

perror ("Failed creating thread");

exit (1);

}

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200847

Hands-on – multi-threaded hello world (cont’d)

/* Wait for SPU-thread to complete execution. */

for (i=0; i<spu_threads; i++) {

if (pthread_join (threads[i], NULL)) {

perror("Failed pthread_join");

exit (1);

}

}

printf("\nThe program has successfully executed.\n");

return (0);

}

4. Create a directory named spu.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200848

Hands-on – multi-threaded hello world (cont’d)

5. In the directory spu, create a file named Makefile using the following code:
###

Target

##

PROGRAMS_spu := simple_spu

created embedded library

LIBRARY_embed := lib_simple_spu.a

##

make.footer

##

make.footer is in the top of the SDK

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../../buildutils/make.footer

endif

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200849

Hands-on – multi-threaded hello world (cont’d)

6. In the same directory, create a file simple_spu.c using the following code:

#include <stdio.h>

int main(unsigned long long id)

{

/* The first parameter of an spu program will always be the spe_id of the spe

* thread that issued it.

*/

printf("Hello Cell (0x%llx)\n", id);

return 0;

}

7. Compile the program by entering the following command at the command line while in the
simple directory:

make

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200850

Summary

Compile and execute different types of cell programs on the simulator
– Understand the basic differences between a ppu, spu, and BE program

– Understand the embedded concept of a cellBE program

– Understand the build process

– Understand the contents of different Makefile

– Understand the basic operations of the simulator

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200851

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in
other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained
in this document.
Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.
IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY
10504-1785 USA.
All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.
The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or
guarantees either expressed or implied.
All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations
and conditions.
IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions
worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal
without notice.
IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.
All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
Many of the features described in this document are operating system dependent and may not be available on Linux. For more information,
please check: http://www.ibm.com/systems/p/software/whitepapers/linux_overview.html
Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this
document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised January 19, 2006

Special Notices -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200852

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: alphaWorks, BladeCenter,
Blue Gene, ClusterProven, developerWorks, e business(logo), e(logo)business, e(logo)server, IBM, IBM(logo), ibm.com, IBM Business Partner (logo),
IntelliStation, MediaStreamer, Micro Channel, NUMA-Q, PartnerWorld, PowerPC, PowerPC(logo), pSeries, TotalStorage, xSeries; Advanced Micro-
Partitioning, eServer, Micro-Partitioning, NUMACenter, On Demand Business logo, OpenPower, POWER, Power Architecture, Power Everywhere, Power
Family, Power PC, PowerPC Architecture, POWER5, POWER5+, POWER6, POWER6+, Redbooks, System p, System p5, System Storage, VideoCharger,
Virtualization Engine.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. in the United States, other countries,
or both.
Rambus is a registered trademark of Rambus, Inc.
XDR and FlexIO are trademarks of Rambus, Inc.
UNIX is a registered trademark in the United States, other countries or both.
Linux is a trademark of Linus Torvalds in the United States, other countries or both.
Fedora is a trademark of Redhat, Inc.
Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.
Intel, Intel Xeon, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation in the United States and/or other countries.
AMD Opteron is a trademark of Advanced Micro Devices, Inc.
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.
TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).
SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and
SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).
AltiVec is a trademark of Freescale Semiconductor, Inc.
PCI-X and PCI Express are registered trademarks of PCI SIG.
InfiniBand™ is a trademark the InfiniBand® Trade Association
Other company, product and service names may be trademarks or service marks of others.

Revised July 23, 2006

Special Notices (Cont.) -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200853

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

Special Notices - Copyrights

