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Class Objectives

= You will learn how to write, build and run “Hello World!” on the Cell System
Simulator

= Navigate through the basic build process and make files
= Familiarize with gcc and xlc compilers
= Familiarize with the system simulator

= There are three different versions of “Hello World!” used in this session
— PPE only,
— SPE only, and
— Cell BE, i.e. using both PPE and SPE

« Synchronous
* Asynchronous

Trademarks - Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.
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How to build, compile and execute the “Hello World!” program

= Pre-requisites
— Toolchain
— Compiler
= Build Process
= Source Code
— Makefiles
— Source PPE
— Source SPE
= Simulator
— Getting the binary into the simulator
— Running the binary

3/2/2008 © 2007 IBM Corporation
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The build process
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Build Process
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SDK 3.0 Makefile
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Compiling within the SDK

= Top of build environment is /opt/cell/sdk/

= |ncludes the build environment files
— README_build_env.txt

* Provides details on the build environment features, including files, structure and
variables.

— make.footer

- Specifies all of the build rules needed to properly build CBEA binaries

- Must be included in all SDK Makefiles (referenced relatively if §CELL_TOP is not
defined)

* Includes make.header
— make.header

- Specifies definitions needed to process the Makefiles
* Includes make.env
— make.env
- Specifies the default compilers and tools to be used by make

= make.footer and make.header should not be modified
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Common Makefile variables

= DIRS
— list of subdirectories to build first
= PROGRAM_ppu PROGRAMS ppu
— 32-bit PPU program (or list of programs) to build.
= PROGRAM_ppub4 PROGRAMS ppu64
— 64-bit PPU program (or list of programs) to build.
= PROGRAM _ spu PROGRAMS_spu

— SPU program (or list of programs) to build.
— If written as a standalone binary, can run without being embedded in a PPU program.

= LIBRARY_embed LIBRARY_embed64

— Creates a linked library from an SPU program to be embedded into a 32-bit or 64-bit
PPU program.

= OBJS OBJS_<program>

— List of objects for the programs (or one specific program). By default, all objects in the
current directory are linked into the binary.

= IMPORTS IMPORTS_<program>

— List of libraries to link in the programs (or one specific program). Also used by the
PPU programs to embed the SPU linked library.
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Directory Layout and Examples of Makefile

= sample
— sample.h

~ Makefle ——

= sample/spu
— Makefile

DIRS = spu ppu
include $(CELL_TOP)/buildutils/make.footer

PROGRAM _ spu = sample_spu

— sample_spu.c

= sample/ppu
— Makefile

— sample.c \ PROGRAM_ppu = sample

7| LIBRARY _embed = lib_sample_spu.a
include $(CELL_TOP)/buildutils/make.footer

IMPORTS = ../spu/lib_sample_spu.a
include $(CELL_TOP)/buildutils/make.footer

3/2/2008
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Building The Code

= Environment setup

— Set the CELL_TOP environment variable so that the makefile system can be found:
+ export CELL TOP=/opt/cell/sdk/
* make.footer contains the build rules for the makefile system

— Ensure compilers or cross-compilers are in the executable search path

= Separate SPE code and PPE code into different directories
— Each set of code has it's own makefile and toolchain to use
— Suggestion: create a subdirectory called ‘spu’ in the directory where the PPU code is

found
= Makefile template for PPE code:
DIRS = spu

PROGRAM ppu = <PPU executable name>
IMPORTS = <spu executable-embed.a> -lspe2
include $(CELL TOP)/buildutils/make.footer

= Makefile template for SPE code:

PROGRAM spu = <SPU executable name>
LIBRARY embed = <spu executable-embed.a>
include $(CELL TOP)/buildutils/make.footer

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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The “Hello World!” program

11 Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation
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Four Different Versions of “Hello World!”

= PPE only
= SPE only

= Synergistic PPE and SPE: synchronous

— One SPE is used.

— Main thread blocks and waits for the SPE code to run to completion
= Synergistic PPE and SPE: asynchronous

— Eight SPEs are used
— Main thread uses pthreads to get concurrent/asynchronous execution

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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“Hello World!” — PPE Only

= PPU program

— just like any “Hello World!” program one would write

#include <stdio.h>

int main(void)
{
printf ("Hello world!\n");

return 0O;

}

Makefile

— make.footer included to set up compiler and compiler flags

— PROGRAM_ppu tells make to use PPC cross-compiler

GROGRAM_ppu tells make to use

PROGRAM ppu = hello ppu ~—

PPC compiler

include $(CELL TOP) /buildutils/make.footer

Cell Programming Workshop
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“Hello World!” — SPE Only

= SPU Program

#include <stdio.h>

int main ()

{
printf ("Hello world!\n");

return 0;

= SPU Makefile
PROGRAM spu tells make

to use SPE compiler

PROGRAM spu := hello_spu
include $(CELL_TOP)/buildutils/make.footer

Cell Programming Workshop
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Synergistic PPE and SPE (SPE Embedded)

= Applications use software constructs called SPE contexts to manage
and control SPEs.

= Linux schedules SPE contexts from all running applications onto the
physical SPE resources in the system for execution according to the

scheduling priorities and policies associated with the runable SPE
contexts.

= libspe provides the means for communication and data transfer
between PPE threads and SPEs.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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How does a PPE program start an SPE thread?

= 4 basic steps must be done by the PPE program

— Create an SPE context.

— Load an SPE executable object into the SPE context local store.

— Run the SPE context. This transfers control to the operating system, which
requests the actual scheduling of the context onto a physical SPE in the
system.

— Destroy the SPE context.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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SPE context creation

= spe_context_create - Create and initialize a new SPE context data structure.

#include <libspe2.h>

spe context ptr t spe context create(unsigned int flags,
spe gang context ptr t gang)

— flags - A bit-wise OR of modifiers that are applied when the SPE context
is created.

— gang - Associate the new SPE context with this gang context. If NULL is
specified, the new SPE context is not associated with any gang.

— On success, a pointer to the newly created SPE context is returned.

17 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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spe_program_load

= spe_program_load - Load an SPE main program.

#include <libspe2.h>

int spe program load (spe context ptr t spe,
spe program handle t *program)

— spe - A valid pointer to the SPE context for which an SPE program should
be loaded.

— program - A valid address of a mapped SPE program.

18 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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spe_context run

= spe_context_run - Request execution of an SPE context.

#include <libspe2.h>

int spe context run(spe context ptr t spe, unsigned int *entry,
unsigned int runflags, void *argp, void *envp, spe stop info t
*stopinfo)

spe - A pointer to the SPE context that should be run.

entry - Input: The entry point, that is, the initial value of the SPU instruction
pointer, at which the SPE program should start executing. If the value of
entry is SPE_DEFAULT_ENTRY, the entry point for the SPU main program
is obtained from the loaded SPE image. This is usually the local store
address of the initialization function crtO.

runflags - A bit mask that can be used to request certain specific behavior
for the execution of the SPE context. O indicates default behavior.

argp - An (optional) pointer to application specific data, and is passed as
the second parameter to the SPE program,

envp - An (optional) pointer to environment specific data, and is passed
as the third parameter to the SPE program,

— stopinfo An (optional) pointer to a structure of type spe_ stop _info t

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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spe_context _destroy

= spe_context_destroy - Destroy the specified SPE context.
#include <libspe2.h>

int spe context destroy (spe context ptr t spe)

— spe - Specifies the SPE context to be destroyed

— On success, 0 (zero) is returned, else -1 is returned

20 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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“Hello World!" — PPE and SPE Combined Structure

PPU Executable

= SPU code

— Compiled with SPU specific toolchain
— Object is repackaged as PPC ELF object

— From this point forward normal PPU tools
are used.

= PPU code System Libraries

— Compiled with normal PPU toolchain

= Objects are linked to form a combined
executable.

= At runtime, kernel extensions and
SDK libraries are used to move the
SPU code to an SPU and start the SPU
thread.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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“Hello World!” — Synergistic PPE and SPE (SPE Embedded)

= SPU program
— Same as for SPE only
= SPU Makefile

PROGRAM spu := hello spu
LIBRARY embed := hello spu.a
include $(CELL TOP) /buildutils/make.footer

22 Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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“Hello World!” — PPU program

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <libspe2.h>

extern spe program handle_ t hello_spu;

int main (void)
{
spe_context ptr t speid;
unsigned int flags = 0;
unsigned int entry = SPE DEFAULT_ ENTRY;
void * argp = NULL;
void * envp = NULL;
spe_stop_info_t stop_info;

int rc;

// Create an SPE context
speid = spe_context create(flags, NULL);
if (speid == NULL) {
perror ("spe_context create");

return -2;

}

23 Cell Programming Workshop

// Load an SPE executable object into the
SPE context local store

if (spe_program load(speid, &hello_spu))
{

perror ("spe_program load");
return -3;

}

// Run the SPE context

rc = spe_context run(speid, &entry, O,
argp, envp, &stop_info);

if (rc < 0)

perror ("spe_context run");
// Destroy the SPE context

spe_context destroy (speid) ;

return O;

PPU Makefile

DIRS = spu

PROGRAM ppu = hello bel

IMPORTS = spu/hello spu.a -lspe2 -lpthread
include $(CELL TOP) /buildutils/make.footer

3/2/2008 © 2007 IBM Corporation
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The IBM Full System Simulator — An Overview

Cell Programming Workshop 3/2/2008 © 2007 1BM Corporation
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Simulator Overview
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SystemSim Runtime Environment

# Create simulator instance
define dup cell mysim

# Load kernel boot image
mysim load vmlinux ./vmlinux 0x1000000

# Start the GUI
Mambolnit::gui

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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SystemSim User Interface

Graphical interface

— Provides a visual display of the state of the simulated system, including the PPE and
the eight (or 16) SPEs

— Includes dialogs to view the contents of the registers, memory, and channels, and
other architectural structures

— Based on Tcl/Tk

— Layered on top of the command line interface

Command line

— Uses Tcl (Tool Control Language) as the base command interpreter
— All the standard Tcl commands are available

— SystemSim commands to configure and create simulated machines
— Commands (e.g. mysim) to control a specific simulated machine

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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Operating-System Modes

= Linux Mode
— Simulator boots a full Linux operating system on the simulated system
— Applications are launched from the Linux console window and run
— The simulated operating system handles all the system calls

= Standalone Mode

— The application is loaded directly into the simulated machine without an operating
system

— The simulator traps all system calls made by the application and performs these
functions in place of the operating system

— Some restrictions apply, such as
* The application must be statically linked with any libraries it needs

* No virtual memory support is provided
* Only a subset of system calls are supported

28 Cell Programming Workshop 3/2/2008
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Simulator Structure and Windows

29
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Interacting with the Simulator

= Issuing commands to the simulator

— in the simulator command window, or using the equivalent actions in the
graphical user interface (GUI).

— To control the simulator itself, configuring it to do such tasks as collect and
display performance statistics on particular SPEs, or set breakpoints in code.

= Issuing commands to the simulated system

— in the console window which is a Linux shell of the simulated Linux operating
system.

— The simulated system is the Linux environment on top of the simulated cell,
where you run and debug programs.

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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Starting the Simulator in GUI Interface

The simulator is invoked with the systemsim command “systemsim —g”
— Note: add /opt/ibm/systemsim-cell/bin to your path

Specify the initial run script using —f if configuration is needed

— file should be in the current directory or path qualified

— This configures the simulated machine and prepares it for execution
— The default is .systemsim.tcl

— Samples are provided in the simulator run directory

* Linux mode:
— Jopt/ibm/systemsim-cell/run/cell/linux/systemsim.tcl

Other systemsim options

— -n : do not open a console window

— -q : suppress periodic run statistics messages

— -g : enable the graphical interface

Starting the simulator in GUI mode with two Cell BE (SMP configuration)
— systemsim —g —f config_smp.tcl

Another way to start the simulator

— # cd /opt/ibm/systemsim-cell/run/cell/linux

— #../run_gui

Cell Programming Workshop 3/2/2008 © 2007 I1BM Corporation
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SystemSim Cell GUI main panel

systemsim-cell
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Basic Simulator operations

i, systemsim-cell

Setvice GDE |

Options |

SPE Visualization

Ewvent Log
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The PPE
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The PPE
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The SPU
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Simulator Modes — fast, simple, and cycle

= The default simulation mode when the simulator starts is
“simple”, or functional-only, simulation

— In this mode, the time / cycles to execute an application is NOT a meaningful
indicator of execution time on real hardware

* To get meaningful performance results:
— Select “Cycle” mode on the GUI

— Enter “mysim mode cycle” in the command window

= This will make the simulator run slower
— Depending on the workload, simulation time could increase by 10x to 100x

— But you can switch between modes as needed, so you can limit this
overhead to just the relevant portions of the simulation
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How to Exchange Files between Host and Simulator

= callthru
— A command issued from a simulated windows (from the simulator)

— “pbackdoor” communication mechanism for the simulated environment to communicate
with the host environment

— Useful for bringing in files to the simulated environment without shutting down and
restarting the simulator

— Example: (binary host = simulator)
« callthru source /opt/cell _class/Hands-on-30/hello/hello_ppu/hello_ppu > hello_ppu
* chmod 755 hello_ppu
« ./hello_ppu

— Example (result file simulator - host)

« callthru sink /home/systemsim-cell/results/result_file < cat result_file
+ exporting result files out of the simulated environment for later inspection
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Execute Binary

39

= From the simulated windows, bring executable into the simulator by

using the callthru utility, e.g.,

— callthru source /opt/cell_class/Hands-on-30/hello/hello _ppu/hello_ppu

> hello_ppu

= Execute binary
— chmod 755 hello_ppu
— ./hello_ppu

Cell Programming Workshop

Tip!
Copy binary to /tmp/’<exe> on
host to shorten the filename
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Building three types of the hello world! program
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Directory Structure

fopt/cell_class/Hands-on-30/hello

= hello_ppu
= hello_spu
= hello_be1 synchronous spu thread (hello_be1-sync)
— spu
= hello_be1 asynchronous spu thread (hello_be1-async)

— spu

Cell Programming Workshop 3/2/2008
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Hands-on Exercise

1. Create a directory hello_ppu, write a hello world ppu program and create a
Makefile, then compile and execute it as a standalone ppu program

2. Create a directory hello_spu, write a hello world spu program and create a
Makefile, then compile and execute it as a standalone spu program

3. Create a directory hello_be1, and write a ppu program that calls an spu
program to write hello world in a synchronous manner. Create all ppu and
spu makefiles. Compile and execute those programs to demonstrate the
basic structure of a simple PPE-SPE software synergy model (PPE-single
SPE model)

Same as in 3. but with asynchronous thread

5. Producing a simple multi-threaded hello world program
=  See instructions in the next page

Need to compile (use make) and run the
executables on the simulator
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Hands-on — multi-threaded hello world

To produce a simple program for the CBE, you should follow the steps listed below (this example is included in the
SDK in /opt/cell/sdk/src/tutorial/simple).

The project is called simple. For this example, the PPE code will be built in the project directory, instead of a ppu sub-
directory.

This program creates SPE threads that output “Hello Cell (#)\n” to the systemsim output window, where # is the spe_id
of the SPE thread that issued the print.

1. Create a directory named simple.

2. In directory simple, create a file named Makefile using the following code:
HHHHH R R R R R R R R R R R R R R R R R R
# Subdirectories

HHH R R R R R R R R R R R R
DIRS := spu

HHH R R R R R R R R R R R R
# Target

HHH B R R R R R R
PROGRAM_ppu := simple

HH R R R R
# Local Defines

HHHHH R R R R R R R R R R R R R R R R R R R
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Hands-on — multi-threaded hello world (cont’'d)

IMPORTS := spu/lib_simple_spu.a -Ispe2 -Ipthread

# imports the embedded simple_spu library

# allows consolidation of spu program into ppe binary

HHHH R R R R
# make.footer

HHH R R R R R R
# make.footer is in the top of the SDK

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

Endif

3. In directory simple, create a file simple.c using the following code:
#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <libspe2.h>

#include <pthread.h>
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Hands-on — multi-threaded hello world (cont’d)

extern spe_program_handle_t simple_spu;
#define MAX_SPU_THREADS 16

void *ppu_pthread_function(void *arg) {
spe_context ptr_t ctx;

unsigned int entry = SPE_DEFAULT_ENTRY;
ctx = *((spe_context_ptr_t *)arg);

if (spe_context_run(ctx,&entry, 0, NULL, NULL, NULL) < 0) {
perror ("Failed running context");

exit (1);

}

pthread_exit(NULL);

}

int main()

{

int i,spu_threads;

spe_context ptr_t ctxs[MAX_SPU_THREADS];
pthread_t threads[]MAX_SPU_THREADS];
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Hands-on — multi-threaded hello world (cont’d)

[* Determine the number of SPE threads to create */

spu_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);
if (spu_threads > MAX_SPU_THREADS) spu_threads = MAX_SPU_THREADS;
/* Create several SPE-threads to execute 'simple_spu’ */

for(i=0; i<spu_threads; i++) {

/* Create context */

if ((ctxs[i] = spe_context_create (0, NULL)) == NULL) {

perror ("Failed creating context");

exit (1);

}

/* Load program into context */

if (spe_program_load (ctxs[i],&simple_spu)) {

perror ("Failed loading program");

exit (1);

}

/* Create thread for each SPE context */

if (pthread_create (&threads]i], NULL,&ppu_pthread_function,&ctxs]i])) {

perror ("Failed creating thread");
exit (1);
}
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Hands-on — multi-threaded hello world (cont’d)

/* Wait for SPU-thread to complete execution. */
for (i=0; i<spu_threads; i++) {

if (pthread_join (threads]i], NULL)) {
perror("Failed pthread_join");

exit (1);

}

}

printf("\nThe program has successfully executed.\n");

return (0);

}
4. Create a directory named spu.

Cell Programming Workshop
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Hands-on — multi-threaded hello world (cont’d)

5. In the directory spu, create a file named Makefile using the following code:
R R R R R R R R R R R R
# Target

R R R R
PROGRAMS _spu := simple_spu

# created embedded library

LIBRARY_embed := lib_simple_spu.a

R R R R
# make.footer

R R R R R R R
# make.footer is in the top of the SDK

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../../buildutils/make.footer

endif
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Hands-on — multi-threaded hello world (cont’d)

6. In the same directory, create a file simple_spu.c using the following code:
#include <stdio.h>

int main(unsigned long long id)

{

[* The first parameter of an spu program will always be the spe_id of the spe

* thread that issued it.

*/

printf("Hello Cell (0x%IIx)\n", id);

return O;

}

7. Compile the program by entering the following command at the command line while in the
simple directory:

make
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Summary

= Compile and execute different types of cell programs on the simulator
— Understand the basic differences between a ppu, spu, and BE program
— Understand the embedded concept of a cellBE program
— Understand the build process
— Understand the contents of different Makefile

— Understand the basic operations of the simulator
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10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.
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guarantees either expressed or implied.
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