
IBM Systems & Technology Group
Cell/Quasar Ecosystem & Solutions Enablement

Cell Programming Workshop 3/2/2008 © 2007 IBM Corporation1

CellBE Programming Tips & Techniques

Cell Programming Workshop
Cell/Quasar Ecosystem & Solutions Enablement

Systems and Technology Group

3/2/2008Cell Programming Workshop2

Class Objectives – Things you will learn

Key programming techniques to exploit cell
hardware organization and language features for
– SPE

– SIMD

Trademarks - Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony
Computer Entertainment, Inc.

Systems and Technology Group

3/2/2008Cell Programming Workshop3

Class Agenda
SPU Programming Tips
– Level of Programming (Assembler, Intrinsics, Auto-

Vectorization)
– Overlap DMA with computation (double, multiple

buffering)
– Dual Issue rate (Instruction Scheduling)
– Design for limited local store
– Branch hints or elimination
– Loop unrolling and pipelining
– Integer multiplies (avoid 32-bit integer multiplies)
– Avoid scalar code
– Choose the right SIMD strategy
– Load / Store only by quadword

SIMD Programming Tips

Systems and Technology Group

3/2/2008Cell Programming Workshop4

SPU Programming Tips

Systems and Technology Group

3/2/2008Cell Programming Workshop5

SPU Programming Tips

Level of Programming (Assembler, Intrinsics, Auto-Vectorization)

Overlap DMA with computation (double, multiple buffering)

Dual Issue rate (Instruction Scheduling)

Design for limited local store

Branch hints or elimination

Loop unrolling and pipelining

Integer multiplies (avoid 32-bit integer multiplies)

Avoid scalar code

Choose the right SIMD strategy

Load / Store only by quadword

Systems and Technology Group

3/2/2008Cell Programming Workshop6

Programming Levels on Cell BE
Expert level

– Assembler, high performance, high efforts
More ease of programming

– C compiler, vector data types, intrinsics, compiler
schedules instructions + allocates registers

Auto-SIMDization

– for scalar loops, user should support by alignment
directives, compiler provides feedback about
SIMDization

Highest degree of ease of use

– user-guided parallelization necessary, Cell BE
looks like a single processor

Trade-Off

Performance vs. Effort

Requirements for Compiler increasing with each level

Systems and Technology Group

3/2/2008Cell Programming Workshop7

Overlap DMA with computation

Double or multi-buffer code or
(typically) data
Example for double buffering n+1
data blocks:

– Use multiple buffers in local store
– Use unique DMA tag ID for each buffer
– Use fence commands to order DMAs within

a tag group
– Use barrier commands to order DMAs within

a queue

Systems and Technology Group

3/2/2008Cell Programming Workshop8

Start DMAs from SPU

Use SPE-initiated DMA transfers rather than PPE-
initiated DMA transfers, because
– there are more SPEs than the one PPE

– the PPE can enqueue only eight DMA requests whereas
each SPE can enqueue 16

Systems and Technology Group

3/2/2008Cell Programming Workshop9

DMA Transfers and LS Accesses

When using DMA buffers, declare the DMA buffers as
volatile to ensure that buffers are not accessed by
SPU load or store instructions until after DMA
transfers have completed
– Channel commands are ordered with respect to volatile-

memory accesses. The DMA commands specify LS addresses
as volatile, void pointers. By declaring all DMA buffers as
volatile, it forces all accesses to these buffers to be performed
(that is, they cannot be cached in a register) and ordered.

When coding DMA transfers, exploit DMA list transfers
whenever possible

Systems and Technology Group

3/2/2008Cell Programming Workshop10

Instruction Scheduling

Systems and Technology Group

3/2/2008Cell Programming Workshop11

Design for Limited Local Store

The Local Store holds up to 256 KB for
– the program, stack, local data structures, and DMA

buffers.

Most performance optimizations put pressure on
local store (e.g. multiple DMA buffers)

Use plug-ins (runtime download program kernels)
to build complex function servers in the LS.

Systems and Technology Group

3/2/2008Cell Programming Workshop12

Branch Optimizations
SPE
– Heavily pipelined high penalty for branch misses (18

cycles)
– Hardware policy: assume all branches are not taken
Advantage
– Reduced hardware complexity
– Faster clock cycles
– Increased predictability
Solution approaches
– If-conversions: compare and select operations
– Predications/code re-org: compiler analysis, user

directives
– Branch hint instruction (hbr, 11 cycles before branch)

Systems and Technology Group

3/2/2008Cell Programming Workshop13

Branches

Systems and Technology Group

3/2/2008Cell Programming Workshop14

Loop Unrolling

– Unroll loops
• to reduce dependencies
• increase dual-issue rates

– This exploits the large SPU register file.

– Compiler auto-unrolling is not perfect, but pretty good.

Systems and Technology Group

3/2/2008Cell Programming Workshop15

Loop Unrolling - Examples

j=N;
For(i=1, i<N, i++) {

a[i] = (b[i] + b[j]) / 2;
j = i;

}

a[1] = (b[1] + b[N]) / 2;
For(i=2, i<N, i++) {

a[i] = (b[i] + b[i-1]) / 2;
}

For(i=1, i<100, i++) {
a[i] = b[i+2] * c[i-1];

}

For(i=1, i<99, i+=2) {
a[i] = b[i+2] * c[i-1];
a[i+1] = b[i+3] * c[i];

}

Systems and Technology Group

3/2/2008Cell Programming Workshop16

SPU

Systems and Technology Group

3/2/2008Cell Programming Workshop17

Function-Inlining

Function-inlining eliminates the two branches associated
with function-call linkage

These include the branch and set link (such as brasl) for
function-call entry, and the branch indirect (such as bi) for
function-call return

Notes: Over-aggressive use of inlining and loop unrolling
can result in code that reduces the LS space available for
data storage or, in the extreme case, is too large to fit in
the LS.

Systems and Technology Group

3/2/2008Cell Programming Workshop18

SPU – Software Pipeline

Design for balanced pipeline use

Systems and Technology Group

3/2/2008Cell Programming Workshop19

Integer Multiplies
Avoid integer multiplies on operands greater than 16 bits
– SPU supports only a 16-bit x16-bit multiply
– 32-bit multiply requires five instructions (three 16-bit multiplies and two adds)

Keep array elements sized to a power-of-2 to avoid multiplies when
indexing.
Cast operands to unsigned short prior to multiplying. Constants are of type
int and also require casting.
Use a macro to explicitly perform 16-bit multiplies. This can avoid
inadvertent introduction of signed extends and masks due to casting.

#define MULTIPLY(a, b)\

(spu_extract(spu_mulo((vector unsigned short)spu_promote(a,0),\

(vector unsigned short)spu_promote(b, 0)),0))

Systems and Technology Group

3/2/2008Cell Programming Workshop20

Avoid Scalar Code

Systems and Technology Group

3/2/2008Cell Programming Workshop21

Promoting Scalar Data Types to Vector Data
Types

Use spu_promote and spu_extract to efficiently
promote scalars to vectors, or vectors to scalars.

Systems and Technology Group

3/2/2008Cell Programming Workshop22

Choose an SIMD strategy appropriate for your
algorithm

Evaluate array-of-structure (AOS) organization
– For graphics vertices, this organization (also called or vector-

across) can have more-efficient code size and simpler DMA
needs,

– but less-efficient computation unless the code is unrolled.

Evaluate structure-of-arrays (SOA) organization.
– For graphics vertices, this organization (also called parallel-

array) can be easier to SIMDize,

– but the data must be maintained in separate arrays or the SPU
must shuffle AOS data into an SOA form.

Systems and Technology Group

3/2/2008Cell Programming Workshop23

Choose SIMD strategy appropriate for algorithm
vec-across
– More efficient code size
– Typically less efficient

code/computation
unless code is unrolled

– Typically simpler DMA needs

parallel-array

– Easy to SIMD – program as if scalar, operating on 4 independent objects at a
time

– Data must be maintained in separate arrays or SPU must shuffle vec-across
data into a parallel array form

Consider unrolling affects when picking SIMD strategy

Systems and Technology Group

3/2/2008Cell Programming Workshop24

SIMD Example

Systems and Technology Group

3/2/2008Cell Programming Workshop25

Load / Store by Quadword

Scalar loads and stores are slow, with long latency.

SPUs only support quadword loads and stores.

Consider making scalars into quadword integer
vectors.

Load or store scalar arrays as quadwords, and
perform your own extraction and insertion to eliminate
load and store instructions.

Systems and Technology Group

3/2/2008Cell Programming Workshop26

SIMD Programming Tips

Reference: Dorit Nuzman, IBM Research

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200827

SIMD tips

Exploit SIMD
– Let compilers auto-SIMD

• Language and algorithms make this challenging
– Write assembly

• Poor productivity
• Not recommended

– Programmer specified using generic Intrinsics
• Inline assembly with function call syntax
• Provide explicit control of the instructions used
• Eliminates optimizations that compilers are good at.

– Register coloring
– Instruction scheduling
– Data loads and stores
– Looping and branching
– Vector literal construction

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200828

Use gcc autovectorization

gcc –O2 –ftree-vectorize myloop.c

for the PPU may need to add –maltivec

-ftree-vectorizer-verbose=[X]
– dumps information on which loops got vectorized, and which didn’t and why

– X=1 least information, X=6 all information

– dumped to stderr unless following flag is used:

-fdump-tree-vect
– dumps information into myloop.c.t##.vect

-fdump-tree-vect-details
– is equivalent to ‘-fdump-tree-vect -ftree-vectorizer-verbose=6’

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200829

Autovectorization programming hints

Don’t unroll the loop
Use countable loops, with no side-effects
– No function-calls in the loop (distribute into a separate loop)
– No ‘break’/’continue’

Avoid aliasing problems
– Use __restrict__ qualified pointers

Keep the memory access-pattern simple
– Don’t use array of structures, e.g.:

for (i=0; i<N; i++)
a[i].s = x;

– Use constant increment. i.e., don’t use the following:
for (i=0; i<N; i+=incr)

a[i] = x;

Alignment
– Use alignment attributes
– If have more than a single misaligned store – distribute into a separate loop (currently

the vectorizer peels the loop to align a misaligned store).

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200830

Compiler Optimization Tips - XLC

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200831

Tips for getting the most out of –O2 and –O3

If possible, test and debug your code without optimization before using -O2

Ensure that your code is standard-compliant. Optimizers are the ultimate
conformance test!

In Fortran code, ensure that subroutine parameters comply with aliasing rules

In C code, ensure that pointer use follows type restrictions (generic pointers
should be char* or void*)

Ensure all shared variables and pointers to same are marked volatile

Compile as much of your code as possible with -O2.

If you encounter problems with -O2, consider using -qalias=noansi or -
qalias=nostd rather than turning off optimization.

Next, use -O3 on as much code as possible.

If you encounter problems or performance degradations, consider using –
qstrict, -qcompact, or -qnohot along with -O3 where necessary.

If you still have problems with -O3, switch to -O2 for a subset of
files/subroutines but consider using -qmaxmem=-1 and/or -qnostrict.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200832

Tips for getting the most out of -qhot

Try using -qhot along with -O2 or -O3 for all of your code. It
is designed to have neutral effect when no opportunities
exist.

If you encounter unacceptably long compile times (this can
happen with complex loop nests) or if your performance
degrades with the use of -qhot, try using -qhot=novector, or -
qstrict or -qcompact along with -qhot.

If necessary, deactivate -qhot selectively, allowing it to
improve some of your code.

Read the transformation report generated using –qreport. If
your hot loops are not transformed as you expect, try using
assertive directives such as INDEPENDENT or CNCALL or
prescriptive directives such as UNROLL or PREFETCH.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200833

Tips for getting the most out of -qipa

When specifying optimization options in a makefile,
remember to use the compiler driver (cc, xlf, etc) to link and
repeat all options on the link step:
– LD = xlf

– OPT = -O3 -qipa

– FFLAGS=...$(OPT)...

– LDFLAGS=...$(OPT)...

-qipa works when building executables or shared objects but
always compile 'main' and exported functions with -qipa.

It is not necessary to compile everything with -qipa but try to
apply it to as much of your program as possible.

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200834

More -qipa tips

When compiling and linking separately, use -qipa=noobject on the
compile step for faster compilation.

Ensure there is enough space in /tmp (at least 200MB) or use the
TMPDIR variable to specify a different directory.

The "level" suboption is a throttle. Try varying the "level" suboption if
link time is too long. -qipa=level=0 can be very beneficial for little cost.

Look at the generated code. If too few or too many functions are
inlined, consider using -qipa=[no]inline

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200835

Coding choices that impact simdization

How loops are organized
– Loop must be countable, preferably with literal trip count
– Only innermost loops are candidates for simdization, except

when nested loops have a short literal iteration count
– Loops with control flow are harder to simdize. Compiler tries to

remove control flow, but not always successful

How data is accessed and laid out in memory
– Data accesses should preferably be stride-one
– Layout the data to maximize aligned accesses
– Prefer use of arrays to pointer arithmetic

Dependences inherent to the algorithm
– Loops with inherent data dependences are not simdizable
– Avoid pointers; pointer aliasing may impede transformations

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200836

Assisting the compiler to perform auto-SIMD

Loop structure
– Inline function calls inside innermost loops
– Automatically (-O5 more aggressive, use inline

pragma/directives)

Data alignment
– Align data on 16-byte boundaries __attribute__((aligned(16))

– Describe pointer alignment _alignx(16, pointer)
• Can be placed anywhere in the code, preferably close to the loop

– Use -O5 (enables inter-procedural alignment analysis)

Pointer aliasing
– Refine pointer aliasing #pragma disjoint(*p, *q) or restrict

keyword

– Use -O5 (enables interprocedural pointer analysis)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200837

Other SIMD Tuning

Loop unrolling can interact with simdization
– Manually-unrolled loops are more difficult to simdize

Tell compiler not to simdize a loop if not profitable
– #pragma nosimd (right before the innermost loop)

– Useful when loop bounds are small and unknown at compile time

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200838

System Level Practices

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200839

System Level Practices

Partitioning and Work allocation strategies

Algorithmic
– Possible self regulated work allocation

Work queues
– Single – SPE arbitrated

• Works well when the work task are computationally significant and variable.
– Multiple – PPE distributed

• Works well when time to complete the task is predictable.

Consider all domains in which to partition the problem.
– example: Video application

• Space – partition scan lines or image regions to a different SPE
• Time – partition each frame to a different SPE

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200840

System Level Practices

Offload as much work onto the SPEs as possible
– Use the PPE as the control plane processor

• Orchestrate and schedule the SPEs
• Assist SPEs with exceptional events

– Use SPEs as data plane processors

Accommodate potential data type differences
– SPE is ILP32 (32-bit integers, longs, and pointers) w/ 32 or 64 EAs (effective

addresses)

– PPE is either ILP32 or LP64 (64-bit longs and pointers)

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200841

Miscellaneous Programming Techniques

Use the software managed cache to handle applications with non-
predicable data access patterns.

SDK 3.0 provides an example of SW cache implementation
– Source - /opt/cell/sdk/src/examples/cache/

• cache/sort : quick sort using sw managed cache
• cache/cache-cp : cache based file copy
• julia : texture mapping using sw managed cache.

Features:
– Support for multiple simultaneous caches

– Attributes: selectable cache size, associatively, read-only or read-write.

– Supports statistical gathering

– Functions: read, read 4, write, flush, print stats, touch, wait, lock, and unlock

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200842

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in
other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained
in this document.
Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.
IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY
10504-1785 USA.
All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.
The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or
guarantees either expressed or implied.
All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations
and conditions.
IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions
worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal
without notice.
IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.
All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
Many of the features described in this document are operating system dependent and may not be available on Linux. For more information,
please check: http://www.ibm.com/systems/p/software/whitepapers/linux_overview.html
Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this
document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised January 19, 2006

Special Notices -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200843

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: alphaWorks, BladeCenter,
Blue Gene, ClusterProven, developerWorks, e business(logo), e(logo)business, e(logo)server, IBM, IBM(logo), ibm.com, IBM Business Partner (logo),
IntelliStation, MediaStreamer, Micro Channel, NUMA-Q, PartnerWorld, PowerPC, PowerPC(logo), pSeries, TotalStorage, xSeries; Advanced Micro-
Partitioning, eServer, Micro-Partitioning, NUMACenter, On Demand Business logo, OpenPower, POWER, Power Architecture, Power Everywhere, Power
Family, Power PC, PowerPC Architecture, POWER5, POWER5+, POWER6, POWER6+, Redbooks, System p, System p5, System Storage, VideoCharger,
Virtualization Engine.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. in the United States, other countries,
or both.
Rambus is a registered trademark of Rambus, Inc.
XDR and FlexIO are trademarks of Rambus, Inc.
UNIX is a registered trademark in the United States, other countries or both.
Linux is a trademark of Linus Torvalds in the United States, other countries or both.
Fedora is a trademark of Redhat, Inc.
Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.
Intel, Intel Xeon, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation in the United States and/or other countries.
AMD Opteron is a trademark of Advanced Micro Devices, Inc.
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.
TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).
SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and
SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).
AltiVec is a trademark of Freescale Semiconductor, Inc.
PCI-X and PCI Express are registered trademarks of PCI SIG.
InfiniBand™ is a trademark the InfiniBand® Trade Association
Other company, product and service names may be trademarks or service marks of others.

Revised July 23, 2006

Special Notices (Cont.) -- Trademarks

IBM Systems & Technology Group – Cell/Quasar Ecosystem & Solutions Enablement

© 2007 IBM CorporationCell Programming Workshop 3/2/200844

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

Special Notices - Copyrights

