
1

School of Electrical Engineering and Computer Science
University of Central Florida

ST: CDA 6938 MultiST: CDA 6938 Multi--Core/ManyCore/Many--Core Architectures and Core Architectures and
ProgrammingProgramming

http://csl.cs.ucf.edu/courses/CDA6938/http://csl.cs.ucf.edu/courses/CDA6938/

Prof. Huiyang Zhou

2

OutlineOutline

• Administration
• Motivation

– Why multi-core many core processors? Why GPGPU?
• CPU vs. GPU
• The brief history of GPGPU
• An overview of AMD/ATI streaming processors and the

software development toolset (Brook+ and CAL)
• An overview of Nvidia G80 and CUDA

2

3

Description (Syllabus)Description (Syllabus)

• High performance computing on multi-core / many-core
architectures

• Focus:
– Data-level parallelism, thread-level parallelism
– How to express them in various programming models
– Architectural features with high impact on the performance

• Prerequisite
– CDA5106: Advanced Computer Architecture I
– C programming

4

Description (cont.)Description (cont.)

• Textbook
– No required textbooks, four optional ones
– Papers & Notes

• Tentative grading policy
– +/- policy will be used
– Homework: 25%
– Participation in discussion: 10%
– Project: 65%

• Including two in-class presentations
– A:90~100 B+: 85~90 B: 80~85 B-: 75~80.

3

5

Who am IWho am I

• Assistant Professor at School of EECS, UCF.

• My research area: computer architecture, back-end
compiler, embedded systems
– High Performance, Power/Energy Efficient, Fault Tolerant

Microarchitectures, Multi-core/many-core architectures
(e.g., GPGPU), Architectural support for software
debugging, Architectural support for information security

6

TopicsTopics

• Introduction to multi-core/many-core architecture
• Introduction to multi-core/many-core programming
• AMD/ATI GPU architectures and the programming model for

GPGPU (Brook+ and CAL) (several guest lectures from AMD)
• NVidia GPU architectures and the programming model for

GPGPU (CUDA)
• IBM Cell BE architecture and the programming model for

GPGPU
• CPU/GPU trade-offs
• Data-level parallelism and the associated programming patterns
• Thread-level parallelism and the associated programming

patterns
• Future multi-core/many-core architectures
• Future programming support for multi-core/many-core

processors

4

7

AssignmentsAssignments

• Homework
– #0 “Hello world!” using emulators (running on CPU) of

GPUs
– Programming assignments (3 sets)

• Projects
– Select one processor model from Nvidia G80, ATI streaming

processors, and IBM Cell processors.
– Select (or find your own) an application
– Try to improve the performance using the GPU that you

selected
• Cross platform comparison

8

ExperimentsExperiments

• Lab: HEC 238 (PS3) and HEC 242 (Computers with ATI /
Nvidia Graphics cards)

• Get the access to the lab and Q & A
– Yi Yang (yangyi@gmail.com)

• Schedule the time

5

9

AcknowledgementAcknowledgement

• Some material including lecture notes are based on the
lecture notes of the following courses:

• Programming Massively Parallel Processors (UIUC)
• Multicore Programming Premier: Learn and Compete

Programming for the PS3 Cell Processors (MIT)
• Multicore and GPU Programming for Video Games

(GaTech)

10

Computer Science at a Crossroads (D. Patterson)Computer Science at a Crossroads (D. Patterson)

• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick

Wall
– Uniprocessor performance now 2X / 5(?) yrs
⇒ Sea change in chip design: multiple “cores”

(2X processors per chip / ~ 2 years)
• More simpler processors are more power efficient

• The Free (performance) Lunch is over: A Fundamental
Turn Toward Concurrency in Software
– The biggest sea change in software development since the

OO revolution is knocking at the door, and its name is
Concurrency (by Herb Sutter)

6

11

Problems with Sea ChangeProblems with Sea Change

• Algorithms, Programming Languages, Compilers, Operating
Systems, Architectures, Libraries, … not ready to supply
Thread Level Parallelism or Data Level Parallelism for 1000
CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by

computer architects and compiler writers alone, but also cannot
be solved without participation of computer architects

• Modern GPUs run hundreds or thousands threads / chip
• Shifts from Instruction Level Parallelism to Thread Level

Parallelism / Data Level Parallelism
• GPGPU is one such example

12

GPU at a GlanceGPU at a Glance

• 1st: Designed for graphics applications

• Trend: converging the different functions into a programmable
model

• To suit graphics applications
– High memory bandwidth

• 86.4 GB/s (GPU) vs. 8.4 GB/s (CPU) (last spring)
• 115.2 (ATI HD 4870); 141.7 GB/s (GTX 280)

– High FP processing power
• 400~500 GFLOPS (GPU) vs. 30~40 GFLOPS (CPU) (last spring)
• 1.2 TFLOPS (ATI HD 4870); 933 GFLOPS (GPU) (GTX 280)

• Can we utilize the processing power to perform computing
besides graphics?

– GPGPU

7

13

GPU vs. CPUGPU vs. CPU

G80 Die (90 nm tech.) Photo IBM Power 6 Die (65 nm tech.) Photo

14

IBM Power 6IBM Power 6

• Outstanding Feature: 4.7 GHz; 2 cores with symmetric
multiprocessing (SMP) support; 8MB L2 cache

8

15

Inside the CPU core (CDA5106)Inside the CPU core (CDA5106)

• Power 5 die

16

GPU Die (GTX280 65 nm)GPU Die (GTX280 65 nm)

9

17

NVidiaNVidia G80G80
• Some Outstanding features:

– 16 highly threaded SM’s, >128
FPU’s

– Shared memory per SM: 16KB
– Constant memory: 64 KB

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

18

GPU vs. CPUGPU vs. CPU
• The GPU is specialized for compute-intensive, highly data

parallel computation (exactly what graphics rendering is
about)
– So, more transistors can be devoted to data processing rather

than data caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

10

19

GPU vs. CPUGPU vs. CPU

• CPU: all these on-chip estate are used to achieve
performance improvement transparent to software
developers
– Sequential programming model
– Moving towards multi-core and many-core

• GPU: more on-chip resources used for floating-point
computation
– Requires data parallel programming model
– Expose architecture features to software developers and

software needs to explicitly taking advantage of those
features to achieve high performance

20Appendix A — 20

FIGURE A.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory. Copyright © 2009
Elsevier, Inc. All rights reserved.

11

21Appendix A — 21

FIGURE A.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of the components and
interconnects in this figure. Copyright © 2009 Elsevier, Inc. All rights reserved.

22Appendix A — 22

FIGURE A.2.3 Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks are
white. Copyright © 2009 Elsevier, Inc. All rights reserved.

12

23Appendix A — 23

FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader stages execute on the
array of unified processors, and the logical graphics pipeline dataflow recirculates through the processors. Copyright ©
2009 Elsevier, Inc. All rights reserved.

24Appendix A — 24

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in
14 streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM
has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit,
and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

13

25Appendix A — 25

FIGURE A.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU
processor. Programmable shader stages are blue, fixed-function blocks are white, and memory objects are grey. Each
stage processes a vertex, geometric primitive, or pixel in a streaming dataflow fashion. Copyright © 2009 Elsevier, Inc. All
rights reserved.

26Appendix A — 26

FIGURE A.3.2 GPU-rendered image. To give the skin visual depth and translucency, the pixel shader program models
three separate skin layers, each with unique subsurface scattering behavior. It executes 1400 instructions to render the
red, green, blue, and alpha color components of each skin pixel fragment. Copyright © 2009 Elsevier, Inc. All rights
reserved.

14

27

Things to know for a GPU processorThings to know for a GPU processor

• Thread execution model
– How the threads are executed, how to synchronize threads
– How the instructions in each/multiple thread(s) are executed

• Memory model
– How the memory is organized
– Speed and Size considerations for different types of memories
– Shared or private memory. If shared, how to ensure the memory

ordering
• Control flow handling
• Instruction Set Architecture

• Support:
– Programming environment
– Compiler, debugger, emulator, etc.

28

HW and SW support for GPGPUHW and SW support for GPGPU

• Nvidia Geforce 8800 GTX vs Geforce 7800
– Slides from the Nvidia talk given at Stanford Univ.

• Programming models
– CUDA
– Brook+
– OpenCL
– CAL
– Peak Stream
– Rapid Mind

