ECE 498AL

Lectures 8:
Memory Hardware in G80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Device Memory Space: Review

Each thread can:

The host can R/W
global, constant, and
texture memories

R/W per-thread registers
R/W per-thread local memory

R/W per-block shared memory

R/W per-grid global memory

Read only per-grid constant
memory

Read only per-grid texture memory

Host

1

(Device) Grid

Block (0, 0)

|

Block (1, 0)

’

Thread (0, 0) Thread (1, 0)

Thread (0, 0)| Thread (1, 0)

i Fyvy'S i pyy
~

3

YV i Fyey

4 v

4 4

Parallel Memory Sharing

* Local Memory: per-thread (slow ,
Thread in DRAM)

— Private per thread
— Auto variables, register spill
* Shared Memory: per-Block (fast)

Block — Shared by threads of the same
block
§> — Inter-thread communication
5 * Global Memory: per-application

— Shared by all threads
— Inter-Grid communication

DIIIIIIIH
222
<

Sequential
Grids
in Time
; S ‘ . Hwu, o8 3
ECE 498AL, Uniiversity of 1ino1s, Urbana-Champaign
HW Overview
Streaming Processor Array
TPC TPC TPC TPC TPC TPC TPC TPC
Streaming Multiprocessor
SM l Instruction Fetch/Dispatch I
| Shared Memory |
= Kl EX
sm Ed _|EN
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 4

ECE 498AL, University of Illinois, Urbana-Champaign

SM Memory Architecture

tm | e, SMO0 SM 1 Tttt . tm
N SN

t0t1t2..

P 24 2 Blocks
s | (=T |p
Blocks B BE ° ThreadsinaBlock share data &
X TN T results
3 - - 3 — In Memory and Shared Memory
3 : — Synchronize at barrier instruction
- HE Per-Block Shared Memory
Texture L1 Allocation
Courtesy:
John Nicols, NVIDIA — Keeps data close to processor
HHHHH — Minimize trips to global Memory
t — SM Shared Memory dynamically
allocated to Blocks, one of the
© David Kirk/NVlDlA nd Wen-mei W. H 2007 i 5
ECEaXQSAL, Universityaof Illi:ois, fjrbana—‘zlliampaign hmltlng resources

SM Register File

* Register File (RF)

1$
- 32KB o
— Provides 4 operands/clock ¥

Multithreaded
Instruction Buffer

* TEX pipe can also read/write RF

— 2SMs shafe 1 TEX ‘ ii cs s
» Load/Store pipe can also read/write RF

v v v

Operand Select

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 6
ECE 498AL, University of Illinois, Urbana-Champaign

Programmer View of Register File

, . 4blocks 3 blocks
* There are 8192 registers in

each SM in G&0

— This is an implementation
decision, not part of CUDA

— Registers are dynamically
partitioned across all Blocks
assigned to the SM

— Once assigned to a Block, the
register is NOT accessible by
threads in other Blocks

— Each thread in the same Block
only access registers assigned
to itself

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Matrix Multiplication Example

 If each Block has 16X16 threads and each thread uses
10 registers, how many thread can run on each SM?
— Each Block requires 10*256 = 2560 registers
— 8192 =3 * 2560 + change
— So, three blocks can run on an SM as far as registers are
concerned

» How about if each thread increases the use of registers
by 1?
— Each Block now requires 11*256 = 2816 registers
— 8192 <2816 *3

— Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 8
ECE 498AL, University of Illinois, Urbana-Champaign

More on Dynamic Partitioning

* Dynamic partitioning gives more flexibility to
compilers/programmers
— One can run a smaller number of threads that require many
registers each or a large number of threads that require few
registers each

* This allows for finer grain threading than traditional CPU threading
models.

— The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 9
ECE 498AL, University of Illinois, Urbana-Champaign

ILP vs. TLP Example

» Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global laods have
200 cycles

— 3 Blocks can run on each SM

+ Ifa Compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist for
each global memory load

— Only two can run on each SM

— However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
latency

— Two Blocks have 16 Warps. The performance can be actually higher!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 10
ECE 498AL, University of Illinois, Urbana-Champaign

Constants

Immediate address constants 1S
L1

Indexed address constants

A

Constants stored in DRAM, and cached on chip Mulithreaded

Instruction Buffer

— LI per SM v

> are
A constant value can be broadcast to all threads > F o

in a Warp v v

— Extremely efficient way of accessing a value that is
common for all threads in a Block! v
MAD

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

v

Operand Select

v
SFU

Shared Memory

» Each SM has 16 KB of Shared Memory 5
— 16 banks of 32bit words
« CUDA uses Shared Memory as shared |t
storage visible to all threads in a thread v
block PoroE
— read and write access vope,and ;edv
» Not used explicitly for pixel shader v v
programs MAD || S

— we dislike pixels talking to each other ©

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

v

Multiply Using Several Blocks

* One computes one square
sub-matrix P, of size BLOCK_SIZE b1z e
W —
* One thread computes one element 1
of P, 1
* Assume that the dimensions of M
and N are multiples of BLOCK SIZE

and square shape f

-
x
+—>

t

bsize-1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Urbana-Champaign v

Matrix Multiplication
Shared Memory Usage

« Each Block requires 2* WIDTH? * 4 bytes of shared
memory storage

— For WIDTH = 16, each BLOCK requires 2KB, up to 8
Blocks can fit into the Shared Memory of an SM

— Since each SM can only take 768 threads, each SM can only
take 3 Blocks of 256 threads each

— Shared memory size is not a limitation for Matrix
Multiplication of

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 14
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Memory Architecture

* In a parallel machine, many threads access memory
— Therefore, memory is divided into banks
— Essential to achieve high bandwidth

» [Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as it has banks

* Multiple simultaneous accesses to a bank .
result in a bank conflict Bank 15
— Conlflicting accesses are serialized
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 15

ECE 498AL, University of Illinois, Urbana-Champaign

Bank Addressing Examples

* No Bank Conflicts * No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread 0
Thread 1
Thread 2

[

[
Thread 4

[

[

[

Thread 0

Thread 1 '

Thread 2 > ‘

Thread 3 “

Thread 4 ’

Thread 5

Thread 6 I v‘
~a

Thread 7

Thread 5
Thread 6
Thread 7

Thread 15 Bank 15 Thread 15 Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 16
ECE 498AL, University of Illinois, Urbana-Champaign

Bank Addressing Examples

* 2-way Bank Conflicts * 8-way Bank Conflicts

— Linear addressing — Linear addressing
stride == stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 8 /

Thread 9
Thread 10
Thread 11

Thread 0
Thread 1
Thread 2
Thread 3 e

Thread 4 "

Thread 5 \

Thread 6 »
x8

Thread 7

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 17
ECE 498AL, University of Illinois, Urbana-Champaign

How addresses map to banks on G80

» Each bank has a bandwidth of 32 bits per clock cycle

* Successive 32-bit words are assigned to successive
banks

* GR8O0 has 16 banks

— So bank = address % 16

— Same as the size of a half-warp

* No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 18
ECE 498AL, University of Illinois, Urbana-Champaign

Shared memory bank conflicts

» Shared memory is as fast as registers if there are no bank
conflicts

e The fast case:

— Ifall threads of a half-warp access different banks, there is no bank
conflict

— Ifall threads of a half-warp access the identical address, there is no
bank conflict (broadcast)
* The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank
— Must serialize the accesses

— Cost = max # of simultaneous accesses to a single bank
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 19
ECE 498AL, University of Illinois, Urbana-Champaign

. Thread 0

(] leen: Thread 1
Thread 2

Thread 3

Thread 4

Thread 5

_shared float shared[256]; Thread 6
float foo = =

shared[baseIndex + s *
threadIldx.x];

Thread 0

 This is only bank-conflict-free if s Thread 1

Thread 2

Thread 3

shares no common factors with the =

Thread 5

number of banks Tivsad®
— 16 on G80, so s must be odd e

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Data types and bank conflicts
 This has no conflicts if type of shared is 32-bits:

Thread 0
foo = shared[baselndex + threadIdx.x] i:'::j;
I{
Thread 3
Thread 4

Thread 5

Thread 6

* But not if the data type is smaller Throad 7

— 4-way bank conflicts:
__shared char shared[];
foo = shared[baseIndex + threadIldx.x]j-mmmmmmmnnaas

— 2-way bank conflicts:
___shared short shared[];
foo = shared[baseIndex + threadIdx.x]; v

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 S
ECE 498AL, University of Illinois, Urbana-Champaign

Structs and Bank Conflicts

* Struct assignments compile into as many memory accesses as there are
struct members:

struct vector { float x, vy, z; };
struct myType {

float £;

int c;

}i
~_shared struct vector vectors[64]; : :
__shared struct myType myTypes[64]; = —

e This has no bank conflicts for vector; struct size is 3 words
— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baselndex + threadIldx.x];

e This has 2-way bank conflicts for my Type; (2 accesses per thread)
struct myType m = myTypes[baselndex + threadIdx.x];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 22
ECE 498AL, University of Illinois, Urbana-Champaign

Common Array Bank Conflict Patterns
1D

* Each thread loads 2 elements into
shared mem:

— 2-way-interleaved loads result in
2-way bank conflicts: Thread 0 —%

Thread 1

Thread 2 §
int tid = threadIdx.x; Thread 3 v

Shared[z*tid] = global[2*tld]; Thread4 |
shared[2*tid+1] = global[2*tid+1];

\,

Thread 8

o This makes sense for traditional CPU Thread 9
Thread 10

threads, locality in cache line usage and —y
reduced sharing traffice.

— Not in shared memory usage where there is

no cache line effects but banking effects
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 23
ECE 498AL, University of Illinois, Urbana-Champaign

Vector Reduction with Bank Conflicts

Array elements ——

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 24
ECE 498AL, University of Illinois, Urbana-Champaign

A Better Array Access Pattern

» Each thread loads one element in
every consecutive group of

Thread 0

bockDim elements. rorend

Thread 2

Thread 3

shared[tid] = global[tid];

shared[tid + blockDim.x] = [
global[tid + blockDim.x]; eSS

Thread 4

Thread 7
(] (]
(] (]
(] (]
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 25

ECE 498AL, University of Illinois, Urbana-Champaign

No Bank Conflicts

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 26
ECE 498AL, University of Illinois, Urbana-Champaign

Common Bank Conflict Patterns (2D)

* Operating on 2D array of floats in

shared memory
— e.g. image processing

« Example: 16x16 block

— Assume that each thread processes a row

— So threads in a block access all element of a
column simultaneously (example: row 1 in

purple)

— All 16 of these elements are mapped into

the same bank

Bank Indices without Padding

— 16-way bank conflicts: rows all start at

bank 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Urbana-Champaign

01234567
012345867
012345867
012345867
012345867
012 345867
01234567
012345867
RS I I SR
® o e o ° o o o
ORIEENEE - B
27

Common Bank Conflict Patterns (2D)

* Solution 1) pad the rows

Matrix view:

— Add one float to the end of each row —___ Bank Indices with Padding

* Solution 2) transpose before processing
— Suffer bank conflicts during transpose
— But possibly save them later
Bank 0 . Bank 15

3 4

23
15160 12
14|15/ 160" 1
13||14/115 16 [0
12/|13/14 15 16
1112113 14/15 16

&
4
3
2
1
(0]

IIWO = N W s oo N

1234 56 7|8 KXy

© Dav#d VIDIA and Wen-mei W. Hwu, 2!

ECE 498AL, University of Illinois, Urbana-Champaign

35... =

<— Column element:

I~ O O~ WN = O
(IIW OO OO U1 W N = O

1
2
)
4
)
6
7
8
.
H

Row elements —>

Memory Bank View:
Matrix indices with padding
Now all elements of the same column are in
different banks. 28

Does Matrix Multiplication Incur Shared
Memory Bank Conflicts?

NEPRREEE -
0123456 7
DN - -
D -
0l 2118141151 161 7 e
. 012 345670
All Warps in a Block OEPEE SO -
access the same row of >
Ms — broadcast! LI
01112118114 15116 ' EXXN 15
012113 451 6 [Y5
0123456 715 .
o o R O All Warp's 1naBlock
0 284 567 s access neighboring
011218114 15116 ' EXX 15 .
0123456 7N elements in a row as they
- access walk through
il neighboring columns!
01213145116 |7 X245
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 29
ECE 498AL, University of Illinois, Urbana-Champaign
Load/Store (Memory read/write)
Clustering/Batching
* Use LD to hide LD latency (non-dependent LD ops only)
— Use same thread to help hide own latency
* Instead of:
— LD 0 (long latency)
— Dependent MATH 0
— LD 1 (long latency)
— Dependent MATH 1
* Do
— LD 0 (long latency)
— LD 1 (long latency - hidden)
- MATHO
— MATH1
* Compiler handles this!
— But, you must have enough non-dependent LDs and Math
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 30

ECE 498AL, University of Illinois, Urbana-Champaign

