
High Level Programming for GPGPU

Jason Yang
Justin Hensley

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Outline

Brook+

Brook+ demonstration on R670

AMD IL

2

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ Introduction

3

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

What is Brook+?

4

Brook is an extension to the C-language for stream
programming originally developed by Stanford University.

Brook+ is an implementation by AMD of the Brook GPU
spec on AMD's compute abstraction layer with some
enhancements.

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 for(i=0; i<10; i++) {
 for(j=0; j<10; j++) {
 input_a[i][j] = (float) i;
 input_b[i][j] = (float) j;
 }
 }

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c);

 streamWrite(c, input_c);
 ...
}

Simple example

5

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 for(i=0; i<10; i++) {
 for(j=0; j<10; j++) {
 input_a[i][j] = (float) i;
 input_b[i][j] = (float) j;
 }
 }

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c);

 streamWrite(c, input_c);
 ...
}

Simple example

5

Kernels - Program functions
that operate on streams

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 for(i=0; i<10; i++) {
 for(j=0; j<10; j++) {
 input_a[i][j] = (float) i;
 input_b[i][j] = (float) j;
 }
 }

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c);

 streamWrite(c, input_c);
 ...
}

Simple example

5

Kernels - Program functions
that operate on streams

Streams – collection of data
elements of the same type
which can be operated on in
parallel.

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 for(i=0; i<10; i++) {
 for(j=0; j<10; j++) {
 input_a[i][j] = (float) i;
 input_b[i][j] = (float) j;
 }
 }

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c);

 streamWrite(c, input_c);
 ...
}

Simple example

5

Kernels - Program functions
that operate on streams

Streams – collection of data
elements of the same type
which can be operated on in
parallel.

Brook+ memory access
functions

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

What’s the idea of stream computing?

Execute programs (kernels) on each element of an input
data array (streams) and outputting the result to another
array.
–Data parallelism
–Transparent access to the processing cores

6

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 for(i=0; i<10; i++) {
 for(j=0; j<10; j++) {
 input_a[i][j] = (float) i;
 input_b[i][j] = (float) j;
 }
 }

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c);

 streamWrite(c, input_c);
 ...
}

Stream computing

7

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Converts Brook+ files into C++ code. Kernels, written in C,
are compiled to AMD’s IL code for the GPU or C code for the
CPU.

Brook+ Compiler

8

CPU Code
(C)

CPU, Stream
Code Splitter

brcc

brt

Integrated
Stream Kernel
& CPU Program

CPU Backend GPU Backend

CPU Emulation Code
(C++)

AMD Stream Processor
Device Code (IL)

Kernel
Compiler

Stream Runtime

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

IL code is executed on the GPU. The backend is written in
CAL.

Brook+ Runtime

9

CPU Code
(C)

CPU, Stream
Code Splitter

brcc

brt

Integrated
Stream Kernel
& CPU Program

CPU Backend GPU Backend

CPU Emulation Code
(C++)

AMD Stream Processor
Device Code (IL)

Kernel
Compiler

Stream Runtime

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ features today (1.0 Alpha)

Brook+ is an extension to the Brook for GPUs source code
(open source).

Features of Brook for GPUs relevant to modern graphics
hardware are maintained.

Kernels are compiled to AMD’s IL.

Runtime uses CAL to execute on AMD GPUs.
CAL runtime generates ASIC specific ISA dynamically

Original CPU backend also included.
Currently used mainly for debugging
Optimizations currently underway

10

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ coming very soon (1.0 Beta)

Double precision

Scatter (mem-export)

Graphics API interoperability
currently readback required

Multi-GPU support

Linux, Vista, XP
32 & 64-bit

Extension Mechanism
Allow ASIC specific features to be exposed without
‘sullying’ core language

11

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ Language

12

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Writing Brook+ code

13

What do you use the Brook+ language for?
Brook+ kernels
Executing Brook+ kernels
Stream handling code
– Reading and writing user data into streams

Application code can be written in Brook+, but is not
necessary

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ is based on C

What’s wrong with this
code?

14

int main(int argc, char** argv)
{
 float input_a[10];
 float input_b[10];

 int i;
 for(i=0; i<10; i++) {
 input_a[i] = (float) i;
 }

 int j;
 for(j=0; j<10; j++) {
 input_b[j] = (float) j;
 }

 ... //Do GPU Stuff

}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ is based on C

What’s wrong with this
code?

14

int main(int argc, char** argv)
{
 float input_a[10];
 float input_b[10];

 int i;
 for(i=0; i<10; i++) {
 input_a[i] = (float) i;
 }

 int j;
 for(j=0; j<10; j++) {
 input_b[j] = (float) j;
 }

 ... //Do GPU Stuff

}

Variables cannot be
declared inline; only at
beginning of code blocks

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Preprocessor caveats

Brook+ compiler has no built-in preprocessor

If the kernel has preprocessor directives, it must be
processed before handing it to the compiler

Preprocessor directives in non-kernel code are passed
through to the subsequent compiler stages

15

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Short vector types

Standard C types supported with exceptions for streams
and kernels

Short vectors (2 to 4 elements) used similarly to shader
programming
–names built by appending the number to the type (e.g.,
“int2”, “float4”)

–doubles are limited to up to 2 elements
–access to individual fields is through structure member
syntax: “.x”, “.y”, “.z”, “.w”

–fields can be accessed in any order and combination up to
four fields (e.g., “.xyzw”, “.xxx”, “.zwy”)

–applying an operator to operands of vector types is
equivalent to applying the operator to each field individually

16

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Basic Brook+ code

Streams

Kernels

Kernel execution

This talk will focus on 1.0 Beta (soon to be released)

17

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Streams

18

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Streams

Data arrays that are operated on by kernels

In the GPU context they are data arrays or texture surfaces
that reside in GPU local memory

Streams elements all have the same type
–can use a struct for multiple types in a stream

19

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Streams (cont.)

Limitations
GPU hardware only natively support sizes of 8192x8192
Brook+ can support larger sizes using software address
translation, which could degrade performance

With address translation largest 1D array is 226

Supported types
 float and float vector
double and double vector
structs of float and double types

20

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Declaring streams

Similar to C style array declaration except angle brackets
are used in place of square brackets
 type name<n>; //1D stream array of type with size n
 type name<n, m>; //2D stream array of type with
dimensions nxm

Examples cases:

float a<5>;

float b<2, 3>;

double c<3>[5]; // array of streams

double d[3]<5>; // stream of arrays

21

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

There is no equivalent malloc() function for streams

Problem: How to dynamically create streams in Brook+ if
declarations cannot be inlined?

Dynamic allocation

22

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

There is no equivalent malloc() function for streams

Problem: How to dynamically create streams in Brook+ if
declarations cannot be inlined?

Dynamic allocation

22

int main(int argc, char** argv)
{
 ...

 x = size;

 float a<x>;

 ...

}

Invalid! Variables must be
declared at beginning of
code blocks

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

There is no equivalent malloc() function for streams

Problem: How to dynamically create streams in Brook+ if
declarations cannot be inlined?

Dynamic allocation

23

int main(int argc, char** argv)
{
 ...

 x = size;

 {
 float a<x>;
 ...
 }

 ...
}

Use scope!

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Accessing streams

Streams cannot be directly accessed by the user (i.e. you
cannot read/write stream elements)

All interaction must be done through IO stream operators

streamRead(destination_stream, source_array)
–copies data from the source_array to the destination_stream
–in the GPU context, data is copied from CPU memory to GPU
memory

streamWrite(source_stream, destination_array)
–copies data from the source_stream to the destination_array
–in the GPU context, data is copied from GPU memory to CPU
memory

User is responsible for input dimensions to match

24

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

How streams are handled by CAL

On stream creation/deletion a buffer is allocated/
deallocated on the GPU with little overhead

On streamRead or streamWrite, data is not immediately
copied

streamRead operation
–Parallel CPU stream array is created and locked from further
access

–data is copied from the user array to a parallel CPU stream
array and then unlocked

–data is then asynchronously transferred from CPU to GPU and
completion is signaled

The reverse happens for streamWrite

25

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamRead()

26

CPU GPU GPU Stream
(local)

User Data Array

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamRead()

26

CPU GPU GPU Stream
(local)

Parallel CPU Stram
(system / remote)

User Data Array

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamRead()

26

CPU GPU GPU Stream
(local)

Parallel CPU Stram
(system / remote)

User Data Array

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamRead()

26

CPU GPU GPU Stream
(local)

Parallel CPU Stram
(system / remote)

User Data Array

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamWrite()

27

CPU GPU

User Data Array

GPU Stram
(local)

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamWrite()

27

CPU GPU

User Data Array

Parallel CPU Stream
(system / remote)

GPU Stram
(local)

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamWrite()

27

CPU GPU

User Data Array

Parallel CPU Stream
(system / remote)

GPU Stram
(local)

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

streamWrite()

27

CPU GPU

User Data Array

Parallel CPU Stream
(system / remote)

GPU Stram
(local)

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Asynchronous stream transfers

Stream transfers are handled asynchronously by using the
CAL asynchronous transfer mechanism

In Brook+, transfers are kicked off immediately and in the
order of the stream calls

Transfers can occur in parallel with kernel executions not
dependent on the streams being transferred. Basically,
transfers and kernel executions can be interleaved

Everything is handled by Brook+, so bottom line is just
worry about coding your application

28

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Function passing

Brook+ supports stream function passing similar to C

Useful when creating larger apps

29

int foo(float in<>, int size)
{
 int val;
 ...
 return val;
}

int main(int argc, char** argv)
{
 int ret;
 float a<5>;

 ...
 ret = foo(a, 5);
 ...
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Stream domain modifier

The domain modifier allows sub-stream accesses with
syntax:

streamname.domain(start_address, end_address);

end_address is not inclusive!

30

void printstream(float in<>, int size)
{

int i;
for(i=0; i<size; i++)
 ...

}

int main(int argc, char** argv)
{
 float my_a[5];
 float a1<10>;

 ...
 streamRead(a1.domain(2, 2+5), my_a);

 printstream(a1.domain(4, 7), 2);
 ...
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Stream domain modifier (cont.)

User is responsible for making sure dimensions match

Higher dimensional streams use vector addressing

Tip: What might be the problem with this code?

31

int main(int argc, char** argv)
{
 float my_b[2][3];
 float a2<10, 10>;
 int2 end;

 ...

 end = int2(3,5);
 streamWrite(a2.domain(int2(1,2), end), my_b);

 ...
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Stream domain modifier (cont.)

User is responsible for making sure dimensions match

Higher dimensional streams use vector addressing

Tip: What might be the problem with this code?

31

int main(int argc, char** argv)
{
 float my_b[2][3];
 float a2<10, 10>;
 int2 end;

 ...

 end = int2(3,5);
 streamWrite(a2.domain(int2(1,2), end), my_b);

 ...
}

Watch the dimensions!

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Kernels

32

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ kernels

Kernels are written like C functions with keyword “kernel”

Limitations
All variables are automatic
Pointers are not supported
Memory cannot be allocated
Recursion is not allowed
See spec for more details

33

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Supported data types

Standard types
 float - 32-bit floating point
double - 64-bit floating point

Other types are promoted to float in kernel
 int - 32-bit signed integer
bool - Boolean

Structs are also supported in kernel

34

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Standard stream passing using open brackets - “<>”

Input and and output stream position is implicit

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard stream passing

35

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Standard stream passing using open brackets - “<>”

Input and and output stream position is implicit

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard stream passing

35

Standard Streams - implicit
and predictable access
pattern

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Standard stream passing using open brackets - “<>”

Input and and output stream position is implicit

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard stream passing

35

Standard Streams - implicit
and predictable access
pattern

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Standard stream passing using open brackets - “<>”

Input and and output stream position is implicit

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard stream passing

35

Standard Streams - implicit
and predictable access
pattern

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Standard stream passing using open brackets - “<>”

Input and and output stream position is implicit

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard stream passing

35

Standard Streams - implicit
and predictable access
pattern

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Standard stream passing using open brackets - “<>”

Input and and output stream position is implicit

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard stream passing

35

Standard Streams - implicit
and predictable access
pattern

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Standard stream passing using open brackets - “<>”

Input and and output stream position is implicit

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard stream passing

35

Standard Streams - implicit
and predictable access
pattern

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Gather streams

Kernel stream input parameters declared with square
brackets - “[]” - are considered gather streams

Gather streams can be arbitrarily addressed

indexof(streamname) function returns current position in
the stream

36

kernel void sum(float a[], float b[], out float c<>)
{
 int idx = indexof(c);
 c = a[idx] + b[idx];
} Gather Streams - dynamic

read access pattern

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Scatter streams

Writing to arbitrary memory locations is known as scatter
and is a relatively new feature of the GPU

Scatter output streams is declared with square brackets

Calling indexof on a scatter stream has special meaning and
will be discussed later

37

kernel void sum(float a<>, float b<>, out float c[])
{
 int idx = indexof(c);
 c[idx] = a + b;
} Scatter Stream - dynamic

write access pattern

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

These kernels, with parameter conventions, do the same
thing

Equivalent kernels

38

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

Standard Streams - implicit
and predictable access
pattern

kernel void sum(float a[], float b[], out float c<>)
{
 int idx = indexof(c);
 c = a[idx] + b[idx];
} Gather Streams - dynamic

read access pattern
kernel void sum(float a<>, float b<>, out float c[])
{
 int idx = indexof(c);
 c[idx] = a + b;
} Scatter Stream - dynamic

write access pattern
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Input/Output HW Limitations

Both standard and gather streams can be mixed in a kernel
for input and output

Up to 16 input streams of standard or gather type can be
declared

Kernels can only write to 8 standard output streams

Only one output stream can be declared as scatter

39

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Constants

Constants can be passed from the application to the kernel

This can be useful for passing stream dimensions

40

kernel void sum(float a<>, float b<>, float2 offset, out float c<>)
{
 c = a + b + offset.x - offset.y;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 ...

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, float2(5.f, 3.f), c);

 streamWrite(c, input_c);
 ...
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Calling other code from kernel code

Kernels can call other functions

Kernel functions must use keyword kernel

41

kernel float helper(float x, float y)
{

return x + y;
}

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = helper(a, b);
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Reduction collapses a stream along one axis using an
associate, commutative binary operation (e.g. +=, *=)

Order of operations is not defined

For example, find_min finds the minimum value in a stream

Reduction

42

reduce void find_min(float a<>, reduce float min)
{
 if(a < min) min = a;
} Reduction - programatically

reduce stream to a value.

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Reduction (cont.)

Dimensional reductions are supported (i.e., 2D to 1D)
– float s<100, 200> reduced to float t<100>

Partial reductions are supported if sizes are integer
multiples
– float s<100, 200> reduced to float t<100, 50>

A kernel may not generate both a reduced output and a
conventional stream output

Multiple reduce variables are permitted

Reduce kernels do not have to produce an output for every
input

43

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Kernel Execution

44

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Putting it all together

45

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 for(i=0; i<10; i++) {
 for(j=0; j<10; j++) {
 input_a[i][j] = (float) i;
 input_b[i][j] = (float) j;
 }
 }

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c);

 streamWrite(c, input_c);
 ...
}

Kernels are called like C
functions

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Data type must match between input streams in kernel
parameters

Passing Streams

46

kernel void sum(float2 a<>, float2 b<>, out float2 c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10, 10>;
 float b<10, 10>;
 float c<10, 10>;

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c);

 streamWrite(c, input_c);
 ...
}

Data types must match

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Stream domains

Kernels can be called with stream subdomains

Again, stream domains must match if using standard
stream passing

47

kernel void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

int main(int argc, char** argv)
{

float a<10>;
float b<10>;
float c<5>;

...

sum(a.domain(2, 2+5), b.domain(5, 5+5), c;

...
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Interleaving

Synchronization is handled
by the Brook+ runtime

GPU operations are non-
blocking unless
synchronization is needed

Be careful of ordering

48

kernel void sum(float a<>, float b<>, out float c<>)
{
 c = a + b;
}

int main(int argc, char** argv)
{

int i, j;
float a<10, 10>;
float b<10, 10>;
float c<10, 10>;
float x<10, 10>;
float y<10, 10>;
float z<10, 10>;

streamRead(a, input_a);
streamRead(b, input_b);
streamRead(x, input_x);

sum(a, b, c);

streamRead(y, input_y);

sum(x, y, z);

streamWrite(z, input_z);
streamWrite(c, input_c);
...

}

streamRead(x) will not
block sum(a,b)

streamWrite(z) will block
streamWrite(c)

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Scatter

Only 1D scatter streams currently supported

streamname.execDomain(domain_length)

49

kernel void sum(float a[], float b[], out float c[])
{
 int idx = indexof(c);
 c[idx] = a[idx] + b[idx];
}

int main(int argc, char** argv)
{
 int i, j;
 float a<10>;
 float b<10>;
 float c<10>;

 streamRead(a, input_a);
 streamRead(b, input_b);

 sum(a, b, c.execDomain(10));

 streamWrite(c, input_c);
 ...
}

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Compiler optimizations

Brook+ compiler is really just a code generator. Very little
optimizations are happening

IL kernels are optimized by the CAL driver compiler at
runtime

C++ compiler isn’t smart enough to remove dead GPU code
(e.g. kernels with outputs that are never used)

50

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Bottom line...

Brook+ tries to be like C

Be smart, don’t force stuff that clearly doesn’t make GPU
sense

Read the spec and programming guide

Refer to the included samples

Give us feedback!

51

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

BREAK!

52

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ Development Environment

53

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Writing Brook+ applications

54

Brook+ consists of two parts
–Brook+ compiler that generates C code
–Brook+ runtime library that handles GPU calls

Brook+ code is written in Brook+ files usually with a “.br”
extension

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Writing Brook+ applications

55

Brook+ code is written in Brook+ files usually with a “.br”
extension

Brook+ files are compiled using the Brook+ compiler
(brcc.exe), which generates C code along with GPU code
(e.g. shaders, API calls)

Generated code is compiled to binaries with brook runtime
libraries

Generated code could also be compiled with other
application code.

C language is needed for code generation only. Application
code could be written in C++

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Example walkthrough

Environment variables

Code writing

Code generation through brcc

Linking with runtime library

Debugging

Samples

56

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Brook+ code

57

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Generated CPP code

58

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Debugging

“printf” debugging by outputting intermediate values to
secondary buffers

Debug using the CPU backend
–set environment variable “brt_runtime=cpu” (default is cal)

59

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Address Translation

Address translation is the ability to support large textures
using software address calculations

Basically support larger sizes or dimensions

Address translation can have a performance penalty if used
unnecessarily

Brook+ compiler will generate both types of code and
automatically pick between the two

Use -R to compile only non-address translated code

60

High Level Programming for GPGPUFebruary 8, 2008 University of Central Florida

Creating larger applications

Use separate files

Treat .br files almost like a library

Keep Brook+ functions to a minimum if possible

61

