
1

School of Electrical Engineering and Computer Science
University of Central Florida

NvidiaNvidia G80 Architecture and CUDA G80 Architecture and CUDA
ProgrammingProgramming

University of Central Florida

CUDA Programming Model:CUDA Programming Model:
A Highly Multithreaded CoprocessorA Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel

• Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

2

University of Central Florida

Thread Batching: Grids and BlocksThread Batching: Grids and Blocks
• A kernel is executed as a grid of

thread blocks
– All threads share data memory

space
• A thread block is a batch of

threads that can cooperate with
each other by:

– Synchronizing their execution
• For hazard-free shared

memory accesses
– Efficiently sharing data through

a low latency shared memory
• Two threads from two different

blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA
From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Block and Thread IDsBlock and Thread IDs

• Threads and blocks have IDs
– So each thread can decide

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIAFrom the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

3

University of Central Florida

CUDA Device Memory Space OverviewCUDA Device Memory Space Overview

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant

memory
– Read only per-grid texture memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
• The host can R/W

global, constant, and
texture memories

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Global, Constant, and Texture MemoriesGlobal, Constant, and Texture Memories
(Long Latency Accesses)(Long Latency Accesses)

• Global memory
– Main means of

communicating R/W Data
between host and device

– Contents visible to all
threads

• Texture and Constant
Memories
– Constants initialized by

host
– Contents visible to all

threads

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Courtesy: NDVIA
From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

4

University of Central Florida

GeForceGeForce--8 Series HW Overview8 Series HW Overview

TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

Streaming Processor Array

…

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

• SPA
– Streaming Processor Array (variable across GeForce 8-series, 8 in

GeForce8800)
• TPC

– Texture Processor Cluster (2 SM + TEX)
• SM

– Streaming Multiprocessor (8 SP)
– Multi-threaded processor core
– Fundamental processing unit for CUDA thread block

• SP
– Streaming Processor
– Scalar ALU for a single CUDA thread

CUDA Processor TerminologyCUDA Processor Terminology

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

5

University of Central Florida

Streaming Multiprocessor (SM)Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– 1 to 768 threads active
– Shared instruction fetch per 32 threads
– Cover latency of texture/memory loads

• 20+ GFLOPS
• 16 KB shared memory
• DRAM texture and memory access SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

G80 Thread Computing PipelineG80 Thread Computing Pipeline
• Processors execute computing threads
• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing
• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Generates Thread
grids based on

kernel calls

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

6

University of Central Florida

Thread Life Cycle in HWThread Life Cycle in HW

• Grid is launched on the SPA
• Thread Blocks are serially

distributed to all the SM’s
– Potentially >1 Thread Block per

SM
• Each SM launches Warps of

Threads
– 2 levels of parallelism

• SM schedules and executes Warps
that are ready to run

• As Warps and Thread Blocks
complete, resources are freed

– SPA can distribute more Thread
Blocks

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

SM Executes BlocksSM Executes Blocks

• Threads are assigned to SMs in Block
granularity

– Up to 8 Blocks to each SM as resource
allows

– SM in G80 can take up to 768 threads
• Could be 256 (threads/block) * 3

blocks
• Or 128 (threads/block) * 6 blocks,

etc.
• Threads run concurrently

– SM assigns/maintains thread id #s
– SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

7

University of Central Florida

Thread Scheduling/ExecutionThread Scheduling/Execution

• Each Thread Blocks is divided in 32-thread
Warps

– This is an implementation decision, not
part of the CUDA programming model

• Warps are scheduling units in SM
• Warps use the SIMD execution model
• If 3 blocks are assigned to an SM and each

Block has 256 threads, how many Warps
are there in an SM?

– Each Block is divided into 256/32 = 8
Warps

– There are 8 * 3 = 24 Warps
– At any point in time, only one of the 24

Warps will be selected for instruction
fetch and execution.

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

SM Warp SchedulingSM Warp Scheduling

• SM hardware implements zero-overhead
Warp scheduling

– Warps whose next instruction has its
operands ready for consumption are
eligible for execution

– Eligible Warps are selected for execution
on a prioritized scheduling policy

– All threads in a Warp execute the same
instruction when selected

• 4 clock cycles needed to dispatch the
same instruction for all threads in a Warp
in G80

– If one global memory access is needed
for every 4 instructions

– A minimal of 13 Warps are needed to
fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

8

University of Central Florida

A Simple Running ExampleA Simple Running Example
Matrix MultiplicationMatrix Multiplication

• A straightforward matrix multiplication example that
illustrates the basic features of memory and thread
management in CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and device

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

An Example: Matrix Multiplication P = M X NAn Example: Matrix Multiplication P = M X N

Data Structure

typedef struct {
int width;
int height;
int pitch;
float* elements;

} Matrix;

• Simple code in C
void MatrixMulOnHost(const Matrix M, const

Matrix N, Matrix P)
{

for (int i = 0; i < M.height; ++i)
for (int j = 0; j < N.width; ++j) {

double sum = 0;
for (int k = 0; k < M.width; ++k) {

double a = M.elements[i * M.width + k];
double b = N.elements[k * N.width + j];
sum += a * b;

}
P.elements[i * N.width + j] = sum;

}
}

Optimizing the CPU code lays a solid foundation to optimize GPU code.

9

University of Central Florida

Analyzing the matrix multiplication (CPU) codeAnalyzing the matrix multiplication (CPU) code

• # of instructions to be executed
– # of memory access instructions (i.e., loads) to be executed

• 2 * M.height * N.Width * M.width
• Loading each element in M for N.Width times
• Loading each element in N for M.Hieght times

• The ratio of computation over memory access instructions
– For every two loads, one multiply and one add

• For CPU, cache locality (spatial and temporal) help to
reduce the load latencies. For large M and N, temporal
locality is low’

• Optimization?
– Unroll and Jam.

University of Central Florida

CUDA Device Memory AllocationCUDA Device Memory Allocation

• cudaMalloc()
– Allocates object in the

device Global MemoryGlobal Memory
– Requires two parameters

• Address of a pointer to
the allocated object

• Size of of allocated object

• cudaFree()
– Frees object from device

Global Memory
• Pointer to freed object

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memor

y

Thread (0,
0)

Register
s

Local
Memor

y

Thread (1,
0)

Register
s

Block (1, 0)

Shared Memory

Local
Memor

y

Thread (0,
0)

Register
s

Local
Memor

y

Thread (1,
0)

Register
s

Host

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

10

University of Central Florida

CUDA Device Memory AllocationCUDA Device Memory Allocation
(cont.)(cont.)

• Code example:
– Allocate a 64 * 64 single precision float array
– Attach the allocated storage to Md.elements
– “d” is often used to indicate a device data

structure

BLOCK_SIZE = 64;
Matrix Md
int size = BLOCK_SIZE * BLOCK_SIZE * sizeof(float);

cudaMalloc((void**)&Md.elements, size);
cudaFree(Md.elements);

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

CUDA HostCUDA Host--Device Data TransferDevice Data Transfer

• cudaMemcpy()
– memory data transfer
– Requires four parameters

• Pointer to source
• Pointer to destination
• Number of bytes copied
• Type of transfer

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous in CUDA 1.0

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memor

y

Thread (0,
0)

Register
s

Local
Memor

y

Thread (1,
0)

Register
s

Block (1, 0)

Shared Memory

Local
Memor

y

Thread (0,
0)

Register
s

Local
Memor

y

Thread (1,
0)

Register
s

Host

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

11

University of Central Florida

CUDA HostCUDA Host--Device Data TransferDevice Data Transfer
(cont.)(cont.)

• Code example:
– Transfer a 64 * 64 single precision float array
– M is in host memory and Md is in device memory
– cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md.elements, M.elements, size,
cudaMemcpyHostToDevice);

cudaMemcpy(M.elements, Md.elements, size,
cudaMemcpyDeviceToHost);

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

CUDA Function DeclarationsCUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed on
the:

• __global__ defines a kernel function
– Must return void

• __device__ and __host__ can be used together

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

12

University of Central Florida

CUDA Function DeclarationsCUDA Function Declarations
(cont.)(cont.)

• __device__ functions cannot have their
address taken

• For functions executed on the device:
– No recursion
– No static variable declarations inside the function
– No variable number of arguments

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Calling a Kernel Function Calling a Kernel Function –– Thread CreationThread Creation

• A kernel function must be called with an execution
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

• Any call to a kernel function is asynchronous from CUDA 1.0
on, explicit synch needed for blocking

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

13

University of Central Florida

Programming Model:Programming Model:
Parallelizing Matrix MultiplicationParallelizing Matrix Multiplication

• P = M * N of size WIDTH x WIDTH
• Without tiling:

– One thread handles one element of P
– M and N are loaded WIDTH times

from global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Step 1: Matrix Data TransfersStep 1: Matrix Data Transfers

// Allocate the device memory where we will copy M to
Matrix Md;
Md.width = WIDTH;
Md.height = WIDTH;
Md.pitch = WIDTH;
int size = WIDTH * WIDTH * sizeof(float);
cudaMalloc((void**)&Md.elements, size);

// Copy M from the host to the device
cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice);

// Read M from the device to the host into P
cudaMemcpy(P.elements, Md.elements, size, cudaMemcpyDeviceToHost);
...
// Free device memory
cudaFree(Md.elements);

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

14

University of Central Florida

Step 2: Matrix MultiplicationStep 2: Matrix Multiplication
A Simple Host Code in CA Simple Host Code in C

// Matrix multiplication on the (CPU) host in double precision
// for simplicity, we will assume that all dimensions are equal

void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
{

for (int i = 0; i < M.height; ++i)
for (int j = 0; j < N.width; ++j) {

double sum = 0;
for (int k = 0; k < M.width; ++k) {

double a = M.elements[i * M.width + k];
double b = N.elements[k * N.width + j];
sum += a * b;

}
P.elements[i * N.width + j] = sum;

}
}From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Multiply Using One Thread BlockMultiply Using One Thread Block

• One Block of threads compute
matrix P

– Each thread computes one element
of P

• Each thread
– Loads a row of matrix M
– Loads a column of matrix N
– Perform one multiply and

addition for each pair of M and N
elements

– Compute to off-chip memory
access ratio close to 1:1 (not very
high)

• Size of matrix limited by the
number of threads allowed in a
thread block

Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

BLOCK_SIZE

M P

N

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

15

University of Central Florida

Step 3: Matrix Multiplication HostStep 3: Matrix Multiplication Host--side Main Program Codeside Main Program Code

M a t r i x M = A l l o c a t e M a t r i x (B L O C K _ S I Z
 M a t r i x N = A l l o c a t e M a t r i x (B L O C K
 M a t r i x P = A l l o c a t e M a t r i x (B L O C K
 M a t r i x D P h = A l l o c a t e M a t r i x D (B L O C

int main(void) {
// Allocate and initialize the matrices

Matrix M = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix N = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix P = AllocateMatrix(WIDTH, WIDTH, 0);

// M * N on the device
MatrixMulOnDevice(M, N, P);

// Free matrices
FreeMatrix(M);
FreeMatrix(N);
FreeMatrix(P);

return 0;
}

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Step 3: Matrix MultiplicationStep 3: Matrix Multiplication
HostHost--side codeside code

// Matrix multiplication on the device
void MatrixMulOnDevice(const Matrix M, const Matrix N, Matrix P)
{

// Load M and N to the device
Matrix Md = AllocateDeviceMatrix(M);
CopyToDeviceMatrix(Md, M);
Matrix Nd = AllocateDeviceMatrix(N);
CopyToDeviceMatrix(Nd, N);

// Allocate P on the device
Matrix Pd = AllocateDeviceMatrix(P);
CopyToDeviceMatrix(Pd, P); // Clear memory

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

16

University of Central Florida

Step 3: Matrix MultiplicationStep 3: Matrix Multiplication
HostHost--side Code (cont.)side Code (cont.)

// Setup the execution configuration
dim3 dimBlock(WIDTH, WIDTH);
dim3 dimGrid(1, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

// Read P from the device
CopyFromDeviceMatrix(P, Pd);

// Free device matrices
FreeDeviceMatrix(Md);
FreeDeviceMatrix(Nd);
FreeDeviceMatrix(Pd);

}
From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Step 4: Matrix MultiplicationStep 4: Matrix Multiplication
DeviceDevice--side Kernel Functionside Kernel Function

// Matrix multiplication kernel – thread specification
__global__ void MatrixMulKernel(Matrix M, Matrix N, Matrix P)
{

// 2D Thread ID
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

17

University of Central Florida

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 4: Matrix Multiplication Step 4: Matrix Multiplication
DeviceDevice--Side Kernel Function (cont.)Side Kernel Function (cont.)

for (int k = 0; k < M.width; ++k)
{

float Melement = M.elements[ty * M.pitch + k];
float Nelement = Nd.elements[k * N.pitch + tx];
Pvalue += Melement * Nelement;

}
// Write the matrix to device memory;
// each thread writes one element
P.elements[ty * P.pitch + tx] = Pvalue;

}

ty

tx

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Step 5: Some Loose EndsStep 5: Some Loose Ends
// Allocate a device matrix of same size as M.
Matrix AllocateDeviceMatrix(const Matrix M)
{

Matrix Mdevice = M;
int size = M.width * M.height * sizeof(float);
cudaMalloc((void**)&Mdevice.elements, size);
return Mdevice;

}

// Free a device matrix.
void FreeDeviceMatrix(Matrix M) {

cudaFree(M.elements);
}

void FreeMatrix(Matrix M) {
free(M.elements);

}
From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

18

University of Central Florida

Step 5: Some Loose Ends (cont.)Step 5: Some Loose Ends (cont.)

// Copy a host matrix to a device matrix.
void CopyToDeviceMatrix(Matrix Mdevice, const Matrix Mhost)
{

int size = Mhost.width * Mhost.height * sizeof(float);
cudaMemcpy(Mdevice.elements, Mhost.elements, size,

cudaMemcpyHostToDevice);
}

// Copy a device matrix to a host matrix.
void CopyFromDeviceMatrix(Matrix Mhost, const Matrix Mdevice)
{

int size = Mdevice.width * Mdevice.height * sizeof(float);
cudaMemcpy(Mhost.elements, Mdevice.elements, size,

cudaMemcpyDeviceToHost);
}

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Step 6: Handling Arbitrary Sized Square MatricesStep 6: Handling Arbitrary Sized Square Matrices

• Have each 2D thread block to compute a
(BLOCK_WIDTH)2 sub-matrix (tile) of
the result matrix
– Each has (BLOCK_WIDTH)2 threads

• Generate a 2D Grid of
(WIDTH/BLOCK_WIDTH)2 blocks

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a
loop around the kernel
call for cases where
WIDTH is greater than
Max grid size!

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

19

University of Central Florida

How about performance?How about performance?

• All threads access global memory for
their input matrix elements

– Two memory accesses (8 bytes) per
floating point multiply-add

– 4B/s of memory bandwidth/FLOPS
– 86.4 GB/s limits the code at 21.6

GFLOPS
• The actual code should run at about 15

GFLOPS
• Need to drastically cut down memory

accesses to get closer to the peak 346.5
GFLOPS

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Global, constant, texture memoriesFrom the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Developing High Performance Multithreaded ProgramsDeveloping High Performance Multithreaded Programs

• Can be very complex, application dependent

• General Guidelines
– Improving Parallelism (thread level).

• #of thread blocks, #of threads in a block
– Optimizing memory usage to achieve high memory bandwidth

• Memory-level parallelism
• Memory coalescing
• Reduce memory accesses

– Improving the instruction throughput

• Those goals may conflict.
– E.g., increase number of insns to get higher parallelism
– Additional hardware constraints due to registers, memory sizes,

etc.

20

University of Central Florida

Idea # 1: Use Shared Memory to reuse global memory dataIdea # 1: Use Shared Memory to reuse global memory data

• Each input element is read by WIDTH threads.
• If we load each element into Shared Memory and have

several threads use the local version, we can drastically
reduce the memory bandwidth
– Tiled algorithms

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

Tiled Multiply Using Thread BlocksTiled Multiply Using Thread Blocks

• One block computes one square sub-
matrix Psub of size BLOCK_SIZE

• One thread computes one element of Psub

• Assume that the dimensions of M and N
are multiples of BLOCK_SIZE and square
shape

M

N

P

Psub

BLOCK_SIZE

WIDTHWIDTH

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W
ID

T
H

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

21

University of Central Florida

Shared Memory UsageShared Memory Usage

• Each SMP has 16KB shared memory
– Each Thread Block uses 2*256*4B = 2KB of shared memory.
– Can potentially have up to 8 Thread Blocks actively

executing
– For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096

pending loads
• In practice, there will probably be up to half of this due

to scheduling to make use of SPs.
– The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB

shared memory usage per Thread Block, allowing only up to
two Thread Blocks active at the same time

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

FirstFirst--order Size Considerationsorder Size Considerations

• Each Thread Block should have a minimal of 192 threads
– BLOCK_SIZE of 16 gives 16*16 = 256 threads

• A minimal of 32 Thread Blocks
– A 1024*1024 P Matrix gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float loads from global
memory for 256 * (2*16) = 8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

22

University of Central Florida

CUDA Code CUDA Code –– Kernel Execution Kernel Execution
ConfigurationConfiguration

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(N.width / dimBlock.x,

M.height / dimBlock.y);

For very large N and M dimensions, one
will need to add another level of blocking and

execute the second-level blocks sequentially.

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

CUDA Code CUDA Code –– Kernel OverviewKernel Overview

// Block index

int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index

int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread

float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix

for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {
code from the next few slides };

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

23

University of Central Florida

Multiply Using Several BlocksMultiply Using Several Blocks

• One block computes one square sub-
matrix Psub of size BLOCK_SIZE

• One thread computes one element of Psub

• Assume that the dimensions of M and N
are multiples of BLOCK_SIZE and square
shape

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

CUDA Code CUDA Code -- Load Data to Shared MemoryLoad Data to Shared Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

24

University of Central Florida

Multiply Using Several BlocksMultiply Using Several Blocks

• One block computes one square sub-
matrix Psub of size BLOCK_SIZE

• One thread computes one element of Psub

• Assume that the dimensions of M and N
are multiples of BLOCK_SIZE

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

CUDA Code CUDA Code -- Compute ResultCompute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads();

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

25

University of Central Florida

Shared Memory Bank ConflictsShared Memory Bank Conflicts

• Threads in the same Warp may have
bank conflict for Nsub accesses

– This should be minimal since the warp likely
spans the horizontal direction, resulting in
broadcast of Msub accesses and no/little
conflict for N accesses

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

University of Central Florida

CUDA Code CUDA Code -- Save ResultSave Result
// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);

This code should run at about 45 GFLOPS

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

26

University of Central Florida

Idea # 2: Use unrolling & jam to reuse global memory dataIdea # 2: Use unrolling & jam to reuse global memory data

• Each thread processes more than 1 element in P
• Multiple elements end with reusing the global memory

data
• Which loop to unroll?

– Which one does the CPU code favor?
– Which one does the GPU code favor?

• Can we take advantage of the cache for const memory?

University of Central Florida

Kernel Code for Unroll and Jam (with a unroll factor of 2 in Kernel Code for Unroll and Jam (with a unroll factor of 2 in
outer loop)outer loop)

void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
{

for (int i = 0; i < M.height; i += 2)
for (int j = 0; j < N.width; ++j) {

double sum1 = 0;
double sum2 = 0;
for (int k = 0; k < M.width; ++k) {

double a1 = M.elements[i * M.width + k];
double b = N.elements[k * N.width + j];
double a2 = M.elements[(i + 1)* M.width + k];
sum1 += a1 * b;
sum2 += a2 * b;

}
P.elements[i * N.width + j] = sum1;
P.elements[(i+1) * N.width + j] = sum2;

}
}

27

University of Central Florida

Kernel Code for Unroll and Jam (with a unroll factor of 2 in Kernel Code for Unroll and Jam (with a unroll factor of 2 in
inner loop)inner loop)

void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
{

for (int i = 0; i < M.height; ++i)
for (int j = 0; j < N.width; j+=2) {

double sum1 = 0;
double sum2 = 0;
for (int k = 0; k < M.width; ++k) {

double a = M.elements[i * M.width + k];
double b1 = N.elements[k * N.width + j];
double b2 = N.elements[k * N.width + j +1];
sum1 += a * b1;
sum2 += a * b2;

}
P.elements[i * N.width + j] = sum1;
P.elements[i * N.width + j + 1] = sum2;

}
}

University of Central Florida

TradeoffTradeoff

• Reduced loads
• High register usage (saving those in shared memory?)
• Reduced parallelism (i.e., number of thread blocks)

