
1

School of Electrical Engineering and Computer Science
University of Central Florida

Patterns for Parallel ProgrammingPatterns for Parallel Programming

University of Central Florida

TextbookTextbook

T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming, Addison-Wesley, 2005, ISBN 0-321-22811-1.

2

University of Central Florida

First of allFirst of all

• Is the problem large enough and the results significant
enough to justify the effort to solve it faster?

• If so, what are the most computationally intensive parts?
Whether speeding them up provides sufficient
performance gains (i.e., Amdahl’s law)?

University of Central Florida

OverviewOverview

Finding Concurrency

Algorithm Structure

Supporting structures

Implementation mechanisms

Exposing exploitable concurrency

Structuring algorithm to take advantage

Structuring program and shared data

Mapping to particular programming
environment

3

University of Central Florida

Finding ConcurrencyFinding Concurrency

Task Decomposition

Data Decomposition

Data Sharing

Order Tasks

Decomposition Group Tasks

Dependence Analysis

Design Evaluation

Algorithm Structure

Supporting structures

Implementation mechanisms

University of Central Florida

Decomposition PatternsDecomposition Patterns

• Task decomposition: view problem as a stream of
instructions that can be broken into sequences called tasks
that can execute in parallel.
– Key: Independent operations

• Data decomposition: view problem from data perspective
and focus on how the can be broken into distinct chunks
– Key: Data chunks that can be operated upon independently

• Task and data decomposition imply each other. They are
different facets of the same fundamental decomposition

4

University of Central Florida

ExampleExample

• Matrix multiplication
– Task decomposition

• Considering the computation of each element in the
product matrix as a separate task

• Performs poorly => group tasks pattern

– Data decomposition
• Decompose the product matrix into chunks, e.g., one row

a chunk, or a small submatrix (or block) per chunk

University of Central Florida

Dependency analysis patternsDependency analysis patterns

• Group tasks: group tasks that have the same dependency
constraints; identify which tasks must execute
concurrently
– Reduced synchronization overhead – all tasks in the group

can use a barrier to wait for a common dependence
– All tasks in the group efficiently share data loaded into a

common on-chip, shared storage (Shard Memory)
– Grouping and merging dependent tasks into one task

reduces need for synchronization

• Order task pattern: identifying order constraints among
task groups.
– Control dependency: Find the task group that creates it
– Data dependency: temporal order for producer and

consumer relationship

5

University of Central Florida

Dependency analysis patternsDependency analysis patterns

• Data sharing pattern: how data is shared among the tasks?
– Read only: make own local copies
– Effectively local: the shared data is partitioned into subsets,

each of which is accessed (for read or write) by only one task
a time.

– Read-write: the data is accessed by more than one task.
Need exclusive access mechanisms.

– Example: the use of the shared memory among threads in a
thread block.

University of Central Florida

Design Evaluation PatternDesign Evaluation Pattern

• Whether the partition fits the target hardware platform?

• Key questions to ask
– How many threads can be supported?
– How many threads are needed?
– How are the data structures shared?
– Is there enough work in each thread between

synchronizations to make parallel execution worthwhile?

6

University of Central Florida

Algorithm StructureAlgorithm Structure

Task Parallelism

Divide and Conquer

Organize by Tasks

Geometric
Decomposition

Recursive Data
Decomposition

Organize by Data

Pipeline

Event Condition

Organize by Flow

Finding Concurrency

Supporting structures

Implementation mechanisms

University of Central Florida

Organizing PrincipleOrganizing Principle

Start

Organize
by Task

Organize by
Data

Organize by
Data Flow

Linear Recursive Linear Recursive

Task
Parallelism

Divide and
Conquer

Geometric
Decomposition

Recursive
Data

Regular Irregular

Pipeline Event Driven

7

University of Central Florida

Task Parallelism PatternTask Parallelism Pattern

• After the problem is decomposed into a collection of tasks
that can execute concurrently, how to exploit this
concurrency efficiently?

• Load balancing

University of Central Florida

Divide and Conquer PatternDivide and Conquer Pattern

• If the problem is formulated using the sequential divide-
and-conquer strategy, how to exploit the potential
concurrency?

8

University of Central Florida

DivideDivide--andand--Conquer PatternConquer Pattern

• Sequential code

University of Central Florida

DivideDivide--andand--Conquer PatternConquer Pattern

• Parallelization Strategy

9

University of Central Florida

Geometric Decomposition PatternGeometric Decomposition Pattern

• How to organize the algorithm after the data has been
decomposed into concurrently updatable chunks?

• Decomposition to minimize the data communication and
dependency among tasks

• Care needs to be taken when update non-local data, e.g.,
exchange operations

University of Central Florida

Recursive data patternRecursive data pattern

• Suppose the problem involves an operation on a recursive
data structure that appears to require sequential
processing. How to make the operations on these data
structures parallel?

• Check whether divide-and-conquer pattern works

• If not, may need to transform the original algorithm.

10

University of Central Florida

Example: Finding root in a forestExample: Finding root in a forest

University of Central Florida

Supporting StructuresSupporting Structures

Fork/Join

Master/Worker

SPMD

Program Structures

Loop Parallelism
Distributed Array

Shared Queue

Shared Data

Data Structures

Finding Concurrency

Algorithm Structure

Implementation mechanisms

11

University of Central Florida

Relationship between Supporting Program Structure Patterns Relationship between Supporting Program Structure Patterns
and Algorithm and Algorithm StrctureStrcture PatternsPatterns

☺☺☺☺☺☺☺
☺

☺☺☺☺☺☺☺☺Fork/
Join

☺☺☺☺☺☺☺☺☺☺Master
/Work
er

☺☺☺☺☺☺☺☺☺Loop
Parallel

☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺SPMD

Event-
based

PipelineRecursiv
e Data

Geometric
Decomp.

Divide/Co
nquer

Task
Parallel.

University of Central Florida

Relationship between Supporting Program Structure Patterns Relationship between Supporting Program Structure Patterns
and Programming Environmentand Programming Environment

☺☺☺☺☺

Brook+/
CUDA

☺☺

☺☺☺☺

☺☺☺

☺☺☺☺

Cell

☺☺☺☺☺☺☺Fork/Joi
n

☺☺☺☺☺☺☺☺Master/
Slave

☺☺☺☺☺☺☺☺Loop
Parallel

☺☺☺☺☺☺☺☺☺SPMD

JavaMPIOpenMP

12

University of Central Florida

Implementation MechanismsImplementation Mechanisms

Finding Concurrency

Algorithm Structure

Supporting structures

Thread/Process
management

Synchronization Communication

