University of Central Florida

Patterns for Parallel Programming

= School of Electrical Engineering and Computer Science
- University of Central Florida

Textbook

T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming, Addison-Wesley, 2005, ISBN 0-321-22811-1.

University of Central Florida

First of all

* [s the problem large enough and the results significant
enough to justify the effort to solve it faster?

* If so, what are the most computationally intensive parts?
Whether speeding them up provides sufficient
performance gains (i.e., Amdahl’s law)?

University of Central Florida

Overview
’ Finding Concurrency ‘ Exposing exploitable concurrency
’ Algorithm Structure ‘ Structuring algorithm to take advantage
’ Supporting structures ‘ Structuring program and shared data
’ Implementation mechanisms ‘ Mapping to particular programming
environment

University of Central Florida

Finding Concurrency

Group Tasks

Task Decomposition

Data Decomposition

Order Tasks

Data Sharing

H

’ Algorithm Structure ‘

’ Supporting structures ‘

v
’ Implementation mechanisms ‘
University of Central Florida

Decomposition Patterns

* Task decomposition: view problem as a stream of
instructions that can be broken into sequences called tasks
that can execute in parallel.

- Key: Independent operations

* Data decomposition: view problem from data perspective
and focus on how the can be broken into distinct chunks

- Key: Data chunks that can be operated upon independently

* Task and data decomposition imply each other. They are
different facets of the same fundamental decomposition

University of Central Florida

Example

* Matrix multiplication
- Task decomposition

* Considering the computation of each element in the
product matrix as a separate task

* Performs poorly => group tasks pattern

- Data decomposition

* Decompose the product matrix into chunks, e.g., one row
a chunk, or a small submatrix (or block) per chunk

University of Central Florida

Dependency analysis patterns

* Group tasks: group tasks that have the same dependency
constraints; identify which tasks must execute
concurrently

- Reduced synchronization overhead - all tasks in the group
can use a barrier to wait for a common dependence

- All tasks in the group efficiently share data loaded into a
common on-chip, shared storage (Shard Memory)

- Grouping and merging dependent tasks into one task
reduces need for synchronization

* Order task pattern: identifying order constraints among
task groups.
- Control dependency: Find the task group that creates it

- Data dependency: temporal order for producer and
consumer relationship

University of Central Florida

Dependency analysis patterns

* Data sharing pattern: how data is shared among the tasks?
- Read only: make own local copies

- Effectively local: the shared data is partitioned into subsets,
each of which is accessed (for read or write) by only one task
a time.

- Read-write: the data is accessed by more than one task.
Need exclusive access mechanisms.

- Example: the use of the shared memory among threads in a
thread block.

University of Central Florida

Design Evaluation Pattern

* Whether the partition fits the target hardware platform?

* Key questions to ask
- How many threads can be supported?
- How many threads are needed?
- How are the data structures shared?

- Is there enough work in each thread between
synchronizations to make parallel execution worthwhile?

University of Central Florida

Algorithm Structure

’ Finding Concurrency ‘

Geometric -
. Pipeline
Decomposition

Recursive Data .
Decomposition

!

’ Supporting structures ‘

’ Implementation mechanisms ‘

University of Central Florida

Organizing Principle

D=

[Organize } [Organize by } [Organize by }

by Task /Data\ Data Flow
Linear Recursive Linear Recursive Regular Irregular
Task Divide and Geometric Recursive Pineline Event Driven
Parallelism Conquer Decomposition Data P

University of Central Florida

Task Parallelism Pattern

* After the problem is decomposed into a collection of tasks
that can execute concurrently, how to exploit this
concurrency efficiently?

* Load balancing

imdependent tasks

university of Lentral riorida

Divide and Conquer Pattern

¢ [f the problem is formulated using the sequential divide-

and-conquer strategy, how to exploit the potential
concurrency?

e e)
sequential r problem |

e
_— split el

i .
- \
. N subproblem
up to 2-way coneurrency (.-.ubpmhli. m | [_ L ._,l

/7 split ™ 7 split \\
[i 1 s =
i\' subproblem ; L sub]_;:rublcm L subproblem [subproblem J

s0lve solv solve l solve
up to d-way concurrency } solve } solve S -I._ .
T BT o ST L R Y (" gubsoluti
1 3 3 ubsolution |
L Ruh:iulutmn_] rsuhhnluuon subsolution] | makgo J
merge . merge
A o
(s i subsolution
up to 2-way concurrency | subsolution) [.]
=== ——
—

~_ merge _—"
s,

sequential | tﬂalutm_n _}'|

University of Central Florida

Divide-and-Conquer Pattern

* Sequential code

func solve returns Solution; // a solution stage

func baseCase returns Boolean; // direct solution test
func baseSolve returns Solution; // direct solution
func merge returns Solution; // combine subsolutions
func split returns Problem[]l; // split into subprobs

Solution solve(Problem P) {

if (baseCase(P))
return baseSolve(P);

else {
Problem subProblems[N];
Solution subSolutions[N];
subProblems = split(P);
for (dnt i = 0; i < N; i++)

subSolutions[i] = solve(subProblems[i]);

return merge(subSolutions);

University of Central Florida

Divide-and-Conquer Pattern

Parallelization Strategy

base-case
solve

base-case
solve

base-case

solve

M
I}
v
‘e
b base-case
i solve
\
|
H
i

merge

s caany va —eareaes s avase

Geometric Decomposition Pattern

* How to organize the algorithm after the data has been
decomposed into concurrently updatable chunks?

* Decomposition to minimize the data communication and
dependency among tasks

* Care needs to be taken when update non-local data, e.g.,
exchange operations

University of Central Florida

Recursive data pattern

* Suppose the problem involves an operation on a recursive
data structure that appears to require sequential
processing. How to make the operations on these data
structures parallel?

* Check whether divide-and-conquer pattern works

* If not, may need to transform the original algorithm.

University of Central Florida

Example: Finding root in a forest

University of Central Florida

Supporting Structures

’ Finding Concurrency ‘

’ Algorithm Structure ‘
[}

Program Structures Data Structures

Shared Data

Fork/Join

Implementation mechanisms ‘

University of Central Florida

G

Relationship between Supporting Program Structure Patterns
and Algorithm Strcture Patterns

Task Divide/Co | Geometric | Recursiv | Pipeline | Event-
Parallel. | nquer Decomp. |e Data based
SPMD |eeo00|00©® o000 |00 000 |©@e
Loop OO0 |06 ©OO
Parallel
Master | o000 |©00© © © © ©
/Work
er
Fork/ |oe 0000 ©0 ©O00 |©©OO
Join ©

University of Central Florida

G

Relationship between Supporting Program Structure Patterns
and Programming Environment

OpenMP | MPI Java Brook+/ Cell
CUDA

SPMD 000 000 |00 00000 |00
Loop 0000 |0 ©00 000
Parallel
Master/ | @ © 000 000 0000
Slave
Fork/Joi | @ © © @000 ©0
n

University of Central Florida

Implementation Mechanisms

’ Finding Concurrency ‘

’ Algorithm Structure ‘

’ Supporting structures ‘

I

Thread/Process
management

Synchronization Communication

University of Central Florida

