
1

1

School of Electrical Engineering and Computer Science
University of Central Florida

ST: CDA 6938: MultiST: CDA 6938: Multi--Core/ManyCore/Many--Core Architecture and Core Architecture and
ProgrammingProgramming

Performance Optimization of GPGPUPerformance Optimization of GPGPU

Huiyang Zhou

2

Performance OptimizationPerformance Optimization

• Goal:
– Balanced utilization of critical resources, including memory

BW, thread-level parallelism, instruction-level parallelism,
register usage, shared memory usage, etc.

– If one resource is under utilized, consider trade off for other
resources.

• E.g., if ALU is under utilized and the TEX ops are the
bottleneck, consider load reuse to increase the ratio of
#ALU ops per TEX op

2

3

A more detailed guideline for memoryA more detailed guideline for memory--bound applicationsbound applications

• 1. Check whether there is enough thread-level parallelism, i.e.,
of threads that can run in a thread block/cluster, to hide the
memory access latency.

– Memory access latency: 200 cycles
– Each warp (warp size = 32 threads in G80/ 64 threads in R670)

takes 4 cycles.
– If there are 2 independent instructions before the use of the loaded

value, how many threads are necessary to hide the latency?
• 200 / (2 * 4) = 25 warps => requiring too much thread-level

parallelism that is supported in either G80 or R670
• Solution: Increasing independent operations, including other

memory accesses (i.e., Memory-level parallelism).
• Check the register usage of each thread (N) since it limits how

many threads can run in a block (G80: #warps = 8k/N/32) or
cluster (R670: #wavefronts = 64k/N/64)

– Key is “enough” thread-level parallelism (TLP
• Once there is enough TLP, further increase in number of

threads will have limited benefit.

4

A more detailed guideline for memoryA more detailed guideline for memory--bound applicationsbound applications

• 2. Optimizing the code of the thread, e.g., reducing the instruction
count by trading of register usage (data reuse, common-expression
elimination, etc) and TLP

• 3. Make best use of fast memory (register file and shared memory)
– May treat shared memory as an extended register file

• Limitations on operands: only one operand can be from shared
memory; additional instruction may be needed to generate the address
offset.

– Checking whether shared memory usage limits thread-level parallelism.
• # thread blocks = 16kB / (shared memory per thread * block size)

– Organize the shared memory accesses to avoid bank conflicts
• 16 banks

• 4. Reorganize/partition the workload in each thread to satisfy the first
three objectives

– E.g. tile size: 16x16 => 2kB shared memory, 256 threads. Shared memory
seems to be under-utilized

– Tile size 32 x 32 => 1024 threads (too much for a block), use the tile size of
16 x16 and unroll & jam to add more work to each thread.

3

5

A more detailed guideline for memoryA more detailed guideline for memory--bound applicationsbound applications

• 5. Checking instruction mix, start the loads as early as
possible if it does not result in register spill & refill

• 6. Consider prefetching for the next iteration, check
register usage to avoid register spill.

• 7. Taking advantage of hardware features such as the
texture cache and constant cache.

6

General Purpose Computing on Different General Purpose Computing on Different GPUsGPUs: A First Look: A First Look

686 M# of transistors

512MB768 MBMem size

Core clock 825MHzCore clock 575 MHz,
Shader 1.35 GHz

Freq

64 GB/s86.4 GB/s Mem
4 GB/s to CPU

Memory BW

521 GFLOPS
(102 GFLOPS double-
precision)

367 GFLOPSFLOPS

80WPower

R670 (AMD Radeon HD
3870)

G80 (Geforce 8800)

4

7

General Purpose Computing on Different General Purpose Computing on Different GPUsGPUs: Thread : Thread
ExecutionExecution

64 (wavefront size) * 4
Each wavefront takes 4
cycles to issue

32 (warp size) * 16
Each warp takes 4 cycles
to issue

active
threads in
execution

64 per wavefront * 256
wave fronts

768 per SM * 16 SM# threads

4 clusters, 16 x 5 cores per
cluster, each cluster time-
multiplex 1 TEX subsys

16 SMs, 8 SP per SM
4 SMs share 1 TEX
subsys

Thread
Hierarchy

5-way VLIW for each
thread

Scalar operation for each
thread

Instruction-
level
parallelism

R670 (AMD Radeon HD
3870)

G80 (Geforce 8800)

8

General Purpose Computing on Different General Purpose Computing on Different GPUsGPUs: Memory : Memory
ModelModel

32kB L1 128kBL2 shared by all
clusters

8kB per SMTexture cache

Device Mem SizeDevice Mem sizeLocal/Global/Tex
ture memory

64KB(?)64KB in totalConstant Memory

?L1 (no L2)8KB per SM, 128KB in totalConstant Cache

A small cacheN/AR/W cache

N/A256 kB = 16kB per SM * 16 SMShared Memory

1MB = 256kB per cluster * 4
cluster
64K registers per cluster
1K register per core (SFU does
not have its own register file)

512 kB = 32kB per SM * 16 SM
8K registers per SM
1K register per SP

Register File

R670 (AMD Radeon HD 3870)G80 (Geforce 8800)

5

9

General Purpose Computing on Different General Purpose Computing on Different GPUsGPUs: Programming : Programming
SupportSupport

SPMDSPMDProgramming
model

CC/C++High-level
Programming
Language

AMD/ATI ILPTXIL

ShaderAnalyzer/CTMDecudaAssembly-
level analysis

Streaming modelThread hierarchyThread
management

R670 (AMD Radeon HD
3870) Brook+/CAL

G80 (Geforce 8800)
CUDA

