
2008 UCF
GPGPU Class @ UCF

HD™ 2900
HD™ 3850 & 3870

HD™ 3870X2

Mike Mantor
Fellow

AMD Graphics Products Group
michael.mantor@amd.com

Agenda

2

- Introduction

- Overview of available GPUs from AMD

- Functional parts of a GPU device

- Data Flow

- Unified Shading, the core of current GPUs

- GPU -> GPGPU, Why!!

- What’s next??

AMD Radeon HD™ 2900 Highlights

3

Technology leadership
• Clock speeds – 742 MHz

• Transistor – 700 million

• Technology Process - TSMC 80nm HS

• Power ~215 W, Pin Count - 2140

• Die Size 420mm (20mm x 21mm)

2nd generation unified architecture
• Scalar ALU design with 320 stream

processing units

• 475 GigaFLOPS of (MulAdd) compute

• 47.5 GigaPixels/Sec & 742 Mtri/sec

• 106 GB/sec Bandwidth

• Optimized for Dynamic Game
Computing and Accelerated Stream
Processing

DirectX® 10
• Massive shader and geometry

processing performance

• Shader Model 4.0 with Integer support

• Enabling the next generation of visual
effects

Cutting-edge image quality
features

• Advanced anti-aliasing and texture
filtering capabilities

• Fast High Dynamic Range rendering

• Programmable Tessellation Unit

ATI Avivo™ HD technology
• Delivering The Ultimate Visual

Experience™ For HD video

• HD display and audio connectivity

• HD DVD and Blu-Ray capable

Native CrossFire™ technology
• Superior multi-GPU support

• Scales up rendering performance
and image quality with 2 or more
GPUs

AMD Radeon HD™ 3850 & HD™ 3870

• RV670 (Available Now)

• 320 Stream Processors

• ~512 GigaFLOPS of compute

• ~102 GFlops Double precision FP
support

• Under $0.50 per GigaFLOP
(including memory)

• >3 GFlops-per-watt

• 64 GB/sec memory bandwidth

• 192 Sqmm

–

– AMD FireStream™ 9170:

– Industry's First GPU with Double-Precision Floating Point

– AMD FireStream 9170 Specifications

– Features
–Powered by next-generation ATI GPU from AMD

–Parallel processing architecture with 320 stream cores

–Up to 500 GFLOPs single precision performance

–2GB GDDR3 on-board memory

–Double Precision Floating Point

–PCIe 2.0 x16 interface

–< 150W power consumption

–Memory export

–BIOS settings optimized for stream processing

–API and OS Support

–Windows XP, XP64

–Linux 32 and Linux 64

AMD’s twin –GPU Radeon HD™ 3870X2

Radeon HD™ 3870X2

– Core: R680 (2x RV670)

– Manufacture Process: 55nm

– Transistor Count: ~1333 million

– Shaders: 640

– Core Clcok 825 MHz

– Memory Clock 900Mhz

– Memory Interface 256 bit(x2)

– Memory Type GDDR3

– Memory Size 1024MB

– Math Rate >1 teraflop SPF

– Interface PCI Express 2.0

– Support DirectX 10.1

Shader Model 4.1

AMD Radeon HD2900 Graphics System

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

S
haderC

aches
Instruction &

C
onstant

Vertex Index Fetch

St
re

am
 O

ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he

Setup
Unit

Setup
Unit

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

S
haderC

aches
Instruction &

C
onstant

Vertex Index Fetch

St
re

am
 O

ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he

Setup
Unit

Setup
Unit

CPU
Host Application
Graphics Driver

System Memory
Address Space

Memory Mapped
HD2900 Registers

Commands Buffers

Instruction/Constant

Inputs/Outputs

AMD HD2900
Graphics Memory

Instruction/Constant

Inputs/Output/Buffer

M
em

o
ry

 C
on

tr
o
lle

r

Interrupts

Display & Multimedia

AMD Radeon HD 2900

PCI Express

PCI Express

Ring Stop

Ring Stop

RingRing
StopStop

RingRing
StopStop

RingRing
StopStop

RingRing
StopStop

Massive Bandwidth
– World’s First 512b Fully

Distributed Memory Interface

– New stacked I/O pad design

Highlights
• Over 100 GB/sec memory bandwidth
• Target achieved via current technology
• Eight 64-bit memory channels
• Kilobit ring bus
• Lower Required Frequencies

Highlights
• Over 100 GB/sec memory bandwidth
• Target achieved via current technology
• Eight 64-bit memory channels
• Kilobit ring bus
• Lower Required Frequencies

6464--bit Memory bit Memory
ChannelChannel

Sequencer

Arbiter

Arbiter

Crossbar

Arbiter

Memory Client Interfaces

Read Write

GDDR3/4
DRAM

GDDR3/4
DRAM

Kilobit Ring BusKilobit Ring Bus
(512(512--bit read + bit read +
512512--bit write)bit write)

Ring StopRing Stop

6464--bit Memory bit Memory
ChannelChannel

Mux

Sequencer

Arbiter

AMD Radeon HD2900 Graphics Unit
2nd Generation Unified Shader Architecture

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

ShaderC
aches

Instruction &
C

onstant

Vertex Index Fetch

St
re

am
 O

ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he
Setup
Unit

Setup
Unit

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

ShaderC
aches

Instruction &
C

onstant

Vertex Index Fetch

St
re

am
 O

ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he
Setup
Unit

Setup
Unit

Development from proven and
successful XBOX 360 graphics

• New dispatch processor handling
thousands of simultaneous threads

• Instruction Cache and Constant Cache
for unlimited program size

Up to 320 discrete, independent
stream processing units

Scalar ALU implementation

• Dedicated branch execution units

• Three dedicated fetch units

• Texture Cache

• Vertex Cache

• Load/Store Cache

Full support for DirectX 10.0,
Shader Model 4.0

Programmer’s View of Shader Dataflow

Types of Parallelism Exploited

• Data Level Parallelism

• Multiple Data Sets: Array of Vertices, Pixels, Primitives, Data Records

• Multiple invocations/instance of a Shader

• Multiple Shader types (i.e. Unified Shaders)

• Instruction Level Parallelism

• Compiler based thread/trace scheduling

• Hardware: 1Macc per element + 1Macc Transcendental

• Within Instruction – 5 scalars co-issue

Command Processor

Surface coherency synchronization

GPU interface with host

A custom RISC based Micro-Coded engine

Memory & Register Read and Write access

Multiple buffers with dependant fetch latency hiding

Hardware based validation of state data at draw call

Host interrupt notification system

Graphics Pipeline Data Flow without GS

DMA
Buffer

DMA
Buffer

DMA
Buffer

DMA
Buffer

State
Data

Sync
Draw
Call

Draw
Call

Draw
Call

State
Data

State
Data

Query

Vertex Shader

PoC
PaC

Rasterizer

Unique
Vertices

Connectivity

Interpolation

Pixel Quads

Pixel Shader

Pixels

Positions

Parameters

Color
&

Depth
Buffer

Shaded

Pixels

D
E
P
T
H

&

C
O
L
O
R

HiZ

EarlyZ

Setup Engine

• Staging to collect data for submission

Different arrival/drain rates

Different storage requirements

Different processing needs

Vertex
Assembler

Geometry
Assembler

Rasterizer

Interpolators

Programmable
Tessellator

Setup
Engine
Setup

Engine

Vertex Index Fetch

Shader Feedback

Hierarchiacal
and EarlyZ

Draw/State

Thread Workload

• Geometry Shader Staging
– On\off chip staging
– Amplification and parallelism

Dependence on SIMD size

• Vertex workload
– Primitive Assembly & Vertex Reuse
– Primitive Tessellation (742Mtri/sec)
– Inputs – Index & Instancing Data

• Pixel Shader Staging
– Rasterization and Interpolation
– Vertex/Pixel I/O mappings
– Inputs- System variables, z,

center, centroid, sample, linear

Submittal Arbitration policies

Output Need feedback/Availability/Balance

Prevent over-subscription

when in doubt favor pixels

Workload preparation for Shader

Motivations for Unified Shader

Unified Shader
• Scene varies in shader type and resources are dynamically shared
• Resources allocated and distributed to balance workloads
• Parts of a frame requiring one shader type will have access to more resources
• Addresses internal frame changing workloads as well as application or market
• Resource scaling decoupled from workload clients

Basic Unified Shader Model

• Basic Unified Shader System
Input Unit

– Staging storage and assembly
– Input arbitration & resource allocation

Shader Computation Unit
– SIMDs (Groups of Pipes)
– Pipes (Groups of GPR/ALU)
– General Purpose Register (GPR)
– Arithmetic Logic Unit (ALU)

Shader Control Unit
– Thread Buffer - Scheduling
– Instruction/Constant Store
– Arbitration/Instruction SEQ

Fetch Units
– Process fetch request
– Provides Address calculations
– Data Caching, fetch, return

Output Buffers
– Shared or exclusive buffers
– Output results for each clients

• Ideal execution – minimize latency & storage
Oldest thread of most in demand type whenever
ready
Always fill gaps with next oldest in that type when
ready
Minimize a threads lifetime in shader

Design Goals for Unified Shader

Simplify design and verification process

Provide shared resources for all shader types

Maximize Performance via ALU utilization

Sustain peak Fetch and I/O Rates

Provide a common programming language

Flexibility and Scalability

Enable common tool chain

Requirements to meet goals

Enable performance scaling for all workloads

Hide latency of memory fetches

Create cache locality to prevent over-fetch

Prevent resource over subscription

Arbitrate on age/need to protect bandwidth

Provide ALU & I/O Ratios for typical workloads

Interleaved diverse workloads to balance

Simultaneous Multi-Threaded Engine

Fetch Limited

ALU Limited

Unified Shader\Stream Processors

Multiple Instruction Multiple Data
– Multiple SIMD units operating in parallel (Multi-Processor System)

– Distributed or shared memory

Single Instruction Multiple Data
– Each SIMD receives independent ALU instruction stream

– Each SIMD applies instruction stream to multiple data elements

Very Long Instruction Word (VLIW) design
– Co-issued up to 6 operations (5 ALU + 1 FC)

– 1.25 Machine Scalar operation per clock for each of 64 data elements

– Independent scalar source and destination addressing

Simultaneous Instruction Issue
– Input, Output, Fetch, ALU, and Control Flow per SIMD

Shader Instructions

Clause – Set of instructions that executes w/o pre-emption

– ALU Instructions

– Texture & Vertex Fetch Instructions

– Memory Read/Write Instructions

VLIW (Very Long Instruction Word), variable length

Control Flow Instructions
– Control branch, loop, stack operations

– Clause launch

– Barriers, Allocation, and Exports

ALU Instruction (1 to 7 64-bit words)
– 5 scalar ops – 64 bits each

– 2 additional words for literal constants

23

Ultra-Threaded Dispatch Processor

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Arbiter Arbiter Arbiter Arbiter

SequencerSequencerSequencer Sequencer

Texture Fetch
Arbiter

Texture Fetch
Sequencer

Vertex Fetch
Arbiter

Vertex Fetch
Sequencer

Vertex / Texture C
ache

Setup EngineSetup Engine
InterpolatorsGeometry AssemblerVertex Assembler

SIMD
Array

80
Stream

Processing
Units

SIMD
Array

80
Stream

Processing
Units

SIMD
Array

80
Stream

Processing
Units

SIMD
Array

80
Stream

Processing
Units

Vertex / Texture U
nits

Unified Thread Group Queue

GS Thread Group 1

VS Thread Group 1

PS Thread Group 1

VS Thread Group 2

VS Thread Group 3

PS Thread Group 2
GS Thread Group 2

PS Thread Group 3
VS Thread Group 4

PS Thread Group 4
PS Thread Group 4

Shader Instruction Cache Shader Constant Cache

LoadStore
Arbiter

LoadStore
Sequencer

R
ead/W

rite C
ache

Export
Arbiter

Export
Sequencer

Control Flow
Arbiter &

Sequencers

Export
Buffers

&
CrossBar

24

Shader Processing Units (SPU)

Arranged as 5-way scalar stream processors
• Co-issue up to 5 scalar FP MAD (Multiply-Add)
• Up to 5 integer operations supported (cmp, logical, add)
• One of the 5 stream processing units additionally handles

* transcendental instructions (SIN, COS, LOG, EXP, RCP, RSQ)

* integer multiply and shift operations
• 32-bit floating point precision (round to nearest even)

Branch execution units handle flow control
and conditional operations
• Condition code generation for full branching
• Predication supported directly in ALU

General Purpose Registers
• 1 MByte of GPR space for fast register access

General Purpose RegistersGeneral Purpose Registers

BranchBranch
ExecutionExecution

UnitUnit

25

Fetch Unit Design

Fetch units
Fetch Address Processors each

– 4 filtered (fetch neighboring data for filtering)

– 4 un-filtered raw data fetch

20 Samples accessed from cache per clock

4 bilinear filter results per clock (with BW)

– Filter rate for each pixel:

one 64-bit FP texture result per clock,

one 128-bit FP result per 2 clocks

Multi-level fetch cache design
L2/L1 cache structures

– Unified 4kb L1 structured cache (unfiltered)

– Unified 32kb L2 structure cache (unfiltered)

– Unified 32k L1 texture cache

– Unified 256KB L2 texture cache

Vertex Address Processors

Texture Filter Units Vertex Fetches

Texture Address Processors

FP16 Texture Samples

26

Memory Read/Write Cache

Virtualizes register space
• Allows overflow to graphics memory
• Can be read from or written to by any SIMD

(fetch caches are read-only)
• Can export data to stream out buffer
• 8KB Fully associative cache, write combining

Stream Out
• Allows shader output to bypass render back-

ends and color buffer
• Outputs sequential stream of data instead of

bitmaps

Uses include:
• Inter-thread communication
• Render to vertex buffer
• Overflow storage/output for Geometry Shader

data (allowing parallel processing for large
amplification)

27

Render Back-Ends

Alpha testing, Alpha and fog blending

Double rate depth/stencil test

32 pixels per clock for ATI Radeon HD 2900

Multi-Sample Anti-Aliasing (MSAA) resolve
functionality is programmable

Makes Custom Anti-Aliasing Filter possible

New blend-able surface formats

Allows new DirectX10 formats to be
displayable

• 128-bit floating point format

• 11:11:10 floating point format

MRT (Multiple Render Target) support

• Up to 8 MRTs with MSAA support

Compress

Decompress

Z/
St

en
ci

l C
ac

he

Color Cache

Decompress Compress

Alpha/FogAlpha/Fog

Depth/StencilDepth/Stencil

BlendBlendProgrammableProgrammable
MSAAMSAA

ResolveResolve

A Scalable Family

ATI RadeonHD 2900
320 Stream Processors

4 SIMDs
4 Texture Units

4 Render Back-End

ATI RadeonHD 2900
320 Stream Processors

4 SIMDs
4 Texture Units

4 Render Back-End ATI Radeon™HD 2600
120 Stream Processing

3 SIMDs
2 Texture Units

1 Render Back-End

ATI Radeon™HD 2600
120 Stream Processing

3 SIMDs
2 Texture Units

1 Render Back-End

ATI Radeon™HD 2400
40 Stream Processing

2 SIMDs
1 Texture Unit

1 Render Back-End
Shared vertex/texture

cache

ATI Radeon™HD 2400
40 Stream Processing

2 SIMDs
1 Texture Unit

1 Render Back-End
Shared vertex/texture

cache

Shader, Texture, Interpolate, Raster Backend Units

Designed with a “numbers of” for most elements

Core functionality exists in all parts

Target specific cost/performance levels for each part

GPU Processing Implications

• Compute is cheap but you need lots of parallelism to
keep all those GPU alu’s busy. (graphics shading is
highly parallel)

• Compute goes up by 70% a year but bandwidth goes
up by 25% a year, latency goes down by 5% a year
(arithmetic intensity – lots of alu ops per read)

• GPU wins when arithmetic intensity is high

• GPU wins when streaming (little reuse – lots of data)

Elements of good streams processor

Programming Model

• Familiar programming tools and interfaces

• Ease of use and full control

• Compilers, assemblers, libraries and
middleware
- No one size fits all - need all of these

• Documented and open interfaces

30

The stream computing model

• Apply the same function to
“n” data elements.

– For GPU’s, a data element is
typically a vertex or pixel.

• No communication or
synchronization between
elements*.

• Optimal performance
requiring “n” to be very large
(many hundreds or
thousands).

*Recent work has shown some value for certain
applications (such as FFT and convolution) in breaking
the stream computing model by allowing limited
communication between elements

Workload Differences

General Processing

• Small batches

• Frequent branches

• Many data inter-
dependencies

• Scalar ops

• Vector ops

Stream Processing

• Large batches

• Few branches

• Few data inter-
dependencies

• Scalar ops

• Vector ops

ATI Radeon HD 2000
Stream Compute Architecture

33

• Both low-latency and
high-throughput
thread generation

• Low latency threads
for interactive
compute applications

• (Physics, AI etc)

• High-throughput
threads for large
compute tasks

• (HPC, Imaging etc)

ATI Radeon HD 2000
Stream Compute Architecture

34

ATI Radeon HD 2000
Stream Compute Architecture

35

• Optimal utilization of
compute resources

• Program cache allows
for unlimited
program size

• Constant cache
allows for unlimited
constants

ATI Radeon HD 2000
Stream Compute Architecture

36

• 320 scalar stream
processors optimized
for utilization

• Both floating point
and integer operation
support

• IEEE754 compliance
enhancements

ATI Radeon HD 2000
Stream Compute Architecture

37

• DMA engine that
maximizes PCIE
bandwidth

• Operates in parallel
to the stream
processing array

• CPU and stream
compute parallelism

AMD Accelerated Computing Software

38

Hardware is only half the story

Open software eco-system necessary for
creating rich development environment and
tools

AMD accelerated computing software stack

CTM Hardware Abstraction Layer

39

• Announced CTM
Hardware Abstraction
Layer (HAL) in
October 2005

• Revealing GPU ISA
was a radical move

• Stream processing on
GPUs was born

• Enabled partners
such as PeakStream,
Havok, Rapidmind

AMD Accelerated Computing Software

40

• Taking the stream
computing
commitment to the
next level

• Introducing the AMD
Runtime

• Higher level compute
abstraction

• Forward compatible

• Automatic multi-core
performance scaling

AMD Accelerated Computing Software

41

• Libraries

• ACML is a super-
optimized math
library for CPUs

• Adding AMD Stream
Processor support to
ACML

AMD Accelerated Computing Software

42

• Compilers

• Deliver compiler
extensions for C,
C++

• Developers work in a
familiar development
environment, with
existing languages

• Now they have
access to new
operators, and can
target code at stream
processors

AMD Accelerated Computing Software

AMD Accelerated Computing Software
Stack

43

AMD Accelerated Computing Software

Elements of Good Stream Processors

44

Applications

• HPC

• Advanced video processing

• Image and photo processing

• Advanced human computer interfaces

• Medicine

• And many more…

Questions?

