
1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

11

Scan – Algorithm Effects on
Parallelism and Memory Conflicts

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

12

Parallel Prefix Sum (Scan)
• Definition:

The all-prefix-sums operation takes a binary associative
operator ⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example:
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set

[0 3 4 11 11 15 16 22]
(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last
input element is not
included in the result

2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

13

Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:
• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Histograms
• Etc.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

14

Scan on the CPU

• Just add each element to the sum of the elements
before it

• Trivial, but sequential
• Exactly n adds: optimal in terms of work efficiency

void scan(float* scanned, float* input, int length)
{

scanned[0] = 0;
for(int i = 1; i < length; ++i)
{
scanned[i] = input[i-1] + scanned[i-1];

}
}

3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

15

A First-Attempt Parallel Scan Algorithm

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T0 61407130

In 361407130

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

16

A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

• Active threads: stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from T0 and
writes result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 75478430
Stride 1

T0 61407130

In 361407130

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

17

A First-Attempt Parallel Scan Algorithm

T1 75478430

T0 1112121111430

Stride 1

Stride 2

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #2
Stride = 2

T0 61407130

In 361407130

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

18

A First-Attempt Parallel Scan Algorithm

T1 2216151111430

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #3
Stride = 4

In 361407130

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130

5

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

19

A First-Attempt Parallel Scan Algorithm

Out 2216151111430

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

3. Write output to device
memory.

T1 2216151111430

In 361407130

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

20

Work Efficiency Considerations

• The first-attempt Scan executes log(n) parallel iterations
– The steps do (n/2 + n/2-1), (n/4+ n/2-1), (n/8+n/2-1),..(1+ n/2-1) adds

each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is not very work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

• A parallel algorithm can be slow when execution resources are
saturated due to low work efficiency

6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

21

Improving Efficiency

• A common parallel algorithm pattern:
Balanced Trees

– Build a balanced binary tree on the input data and sweep it to and
from the root

– Tree is not an actual data structure, but a concept to determine what
each thread does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal

nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

22

Build the Sum Tree
T 36140713

Assume array is already in shared memory

7

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

23

Build the Sum Tree
T 36140713

T 96547743

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

24

Build the Sum Tree
T 36140713

T 96547743

T 1465411743

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

25

Build the Sum Tree
T 36140713

T 96547743

T 1465411743

T 2565411743

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

26

Zero the Last Element

T 065411743

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

9

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

27

Build Scan From Partial Sums
T 065411743

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

28

Build Scan From Partial Sums

T 116540743

T 065411743

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each corresponds
to a single thread.

10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

29

Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 threads

Stride 4

Stride 2

Each corresponds
to a single thread.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

30

Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

T 2216151111430

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 threads

Stride 2

Stride 4

Stride 1

Each corresponds
to a single thread.

