Scan — Algorithm Effects on
Parallelism and Memory Conflicts

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 11
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Prefix Sum (Scan)

* Definition:
The all-prefix-sums operation takes a binary associative
operator @ with identity /, and an array of n elements
lag, ay, -5 a,.4]
and returns the ordered set
[, ap, (ay® ay), ..., (@ a;® ... Da,,)]

» Example:
if @ is addition, then scan on the set

[31704163]
returns the set
0341111151622

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 (From Blelloch, 1990, “Prefix
ECE 498AL, University of Illinois, Urbana-Champaign Sums and Their A pplica tions)

Applications of Scan

» Scan is a simple and useful parallel building block

— Convert recurrences from sequential :
for(j3=1;j<n;j++)
out[j] = out[j-1] + £(J);

— into parallel:

forall(3) { temp[]j] = £(j) 1},
scan (out, temp);

* Useful for many parallel algorithms:

* radix sort * Polynomial evaluation
* quicksort * Solving recurrences
* String comparison * Tree operations
* Lexical analysis * Histograms
* Stream compaction + Etc.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 13

ECE 498AL, University of Illinois, Urbana-Champaign

Scan on the CPU

void scan(float* scanned, float* input, int length)

{

scanned[0] = 0;
for(int i = 1; i < length; ++i)
{
scanned[i] = input[i-1] + scanned[i-1];
}

}

* Just add each element to the sum of the elements
before it

» Trivial, but sequential

» Exactly n adds: optimal in terms of work efficiency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 14
ECE 498AL, University of Illinois, Urbana-Champaign

A First-Attempt Parallel Scan A

1.

Each thread reads one value from the input
array in device memory into shared memory array TO.
Thread 0 writes 0 into shared memory array.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

lgorithm

Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

olm|[3/1]7]0l4l1]6]3],

lrolol3l1[7]ofalife]?
Stride 1 | @ 0 > 0 >0 >0 >0
ltifofslalslrfals]a]

A First-Attempt Parallel Scan Algorithm

. (previous slide)

Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

lteration #1 | | ° Active threads: stride to n-1 (n-stride threads)
gtrgdlon_ 1 * Thread j adds elements j and j-stride from TO
nde = writes result into shared memory buffer T1 (pin

and
g-pong)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 200
ECE 498AL, University of Illinois, Urbana-Champaign

| 1.

| 317 lolal

[0 FE

ol o3[1l7]oflali]e6]
Stride 1 \»\»‘\w\»\»\\n\n
lrifolsf[afsl[rlals]7]o>
Stride 2 [~

[Tol o |34l luln]in]in]

Iteration #2
Stride = 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

A First—Attempt Parallel Scan Algorithm

Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

b L3l 1 [7]olalile]3

| 1.
\\\\\\\\

ltolo 31 l7]lolali]e]

\»‘\n\»‘\»\»\n\n

Stride 1

[Stride 2 [~
ol ol 3l aluliifmlin]il]
ITilol3laflululislielon]
lteration #3
Stride = 4
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

lrifolslalsl[r7lals]i]

A First-Attempt Parallel Scan Algorithm

Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

0

Stride 2

A First-Attempt Parallel Scan Algorithm

|In|3|1|7|0|4|1|6|3|1.Readinputfrom

T SISNIONSSNUNN Saredmamoy st

first el tt
ol o 3T Ty ToTsT1Te] imsemenome

Btride 1 ol @ o @ @ @ —® by one.

ITilols3]lalsesl7l4al5]7] 2 teratelogn)
N— > '__ .__ h times: Threads stride
y to n: Add pairs of
[0l o[3[4 fufiiliofifir]| elementsstide
elements apart.
Double stride at each
iteration. (note must

|T1 | 0 | 3 | 4 | 11 | 11 | 15 | 16 | 22 double buffer shared

bl bl mem arrays)

|Out| 0 | 3 | 4 | 11 | 11 | 15 | 16 | 22 | 3. Write output to device
memory.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 19
ECE 498AL, University of Illinois, Urbana-Champaign

Work Efficiency Considerations

» The first-attempt Scan executes log(n) parallel iterations

— The steps do (n/2 + n/2-1), (n/4+ n/2-1), (n/8+n/2-1),..(1+ n/2-1) adds
each

— Total adds: n * (log(n) — 1) + 1 = O(n*log(n)) work

» This scan algorithm is not very work efficient
— Sequential scan algorithm does » adds
— A factor of log(n) hurts: 20x for 106 elements!

* A parallel algorithm can be slow when execution resources are
saturated due to low work efficiency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 20
ECE 498AL, University of Illinois, Urbana-Champaign

Improving Efficiency

* A common parallel algorithm pattern:

Balanced Trees

— Build a balanced binary tree on the input data and sweep it to and
from the root

— Tree is not an actual data structure, but a concept to determine what
each thread does at each step

 For scan:

— Traverse down from leaves to root building partial sums at internal
nodes in the tree
* Root holds sum of all leaves

— Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 21
ECE 498AL, University of Illinois, Urbana-Champaign

Build the Sum Tree

ltl3[1[7]loflal1]6]3]

’ Assume array is already in shared memory ‘

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 22
ECE 498AL, University of Illinois, Urbana-Champaign

Build the Sum Tree

IT|3|$|7|9|4|1|6|3I
Stride 1 \. \3 \>$ \3 Iteration 1, n/2 threads

lT13[al7]7]4al5]6]09]

Iterate log(n) times. Each thread adds value stride elements away to its own value

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 23
ECE 498AL, University of Illinois, Urbana-Champaign

Build the Sum Tree

IT|3|$|7|9|4|1|6|3I
Stride 1 \>$ \3 \3 \3
lTl3lal7]7]als5]6]09]

v
Stride 2 \t *é Iteration 2, n/4 threads

(T3]a]l7]11]l4]5]6]14]

Iterate log(n) times. Each thread adds value stride elements away to its own value

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 24
ECE 498AL, University of Illinois, Urbana-Champaign

Build the Sum Tree
LT3 /1 l7lo0lal1]l6]13]
Stride 1 \é \é \é \é

IT|3|4|7|z|4|5|6|9I
Stride 2 \-n \->‘

¥
|T|3|4|7|11|4|5|6|1v4|
Stride 4 3 Iteration log(n), 1 thread

T3]4a]l7[11]l4]5]6]25]

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 25
ECE 498AL, University of Illinois, Urbana-Champaign

Zero the Last Element

ltl3lal7lulals[e6]o]

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 26
ECE 498AL, University of Illinois, Urbana-Champaign

Build Scan From Partial Sums
LT3 /4]l7nulal5]6l0]

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

27

Build Scan From Partial Sums

lTl3lal7[ulals[6]0]

Stride4a =0z @00 2__==== —;‘ Iteration 1
- 1 thread

and sets the value stride elements away to its own previous value.

Iterate log(n) times. Each thread adds value stride elements away to its own value,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

28

Build Scan From Partial Sums
IT|3|4|7|11|4|5|6|9I

-

Stride 4 T3

Lrl3l4]7]

2
0[als5[6]11]
Stride 2 e | S><Z" & lteration2
v
4

v ¥ 2 threads
L4 111l 6]16]

Y
T3]0l 7]|

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 29
ECE 498AL, University of Illinois, Urbana-Champaign

Build Scan From Partial Sums
T | 3 4 7 1111 4 5 6

0
Stride 4 — --5®
e ¥
T3 4 | 7 _Q 4 5 6 Ll
Stride 2 e ~_eé
Y ¥ Y ¥
T 3 0 / 4 4 1_1 6 | 16
. N Nt N s Iteration log(n)

Stride 1 9 ? v ¥ v 3 >§ $ n/2 threads

T |0 3 4 |11]11]15]16]|22

Done! We now have a completed scan that we can write out to device memory.
Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 30
ECE 498AL, University of Illinois, Urbana-Champaign

