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OutlineOutline

• Administration
• Motivation

– Why multi-core many core processors? Why GPGPU?
• CPU vs. GPU
• An overview of Nvidia G80 and CUDA
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Description (Syllabus)Description (Syllabus)

• High performance computing on multi-core / many-core 
architectures 

• Focus:
– Data-level parallelism, thread-level parallelism
– How to express them in various programming models
– Architectural features with high impact on the performance

• Prerequisite
– CDA5106: Advanced Computer Architecture I
– C programming
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Description (cont.)Description (cont.)

• Textbook
– No required textbooks, four optional ones
– Papers & Notes

• Tentative grading policy
– +/- policy will be used
– Homework: 25%
– In-class presentation: 10%
– Participation in discussion: 5% (Not applicable to FEEDS 

students)
– Project: 60% 

• Including another in-class presentation
– A:90~100  B+: 85~90 B: 80~85 B-: 75~80.
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Who am IWho am I

• Assistant Professor at School of EECS, UCF.

• My research area: computer architecture, back-end 
compiler, embedded systems
– High Performance, Power/Energy Efficient, Fault Tolerant 

Microarchitectures, Multi-core/many-core architectures 
(e.g., GPGPU), Architectural support for software 
debugging, Architectural support for information security
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TopicsTopics

• Introduction to multi-core/many-core architecture
• Introduction to multi-core/many-core programming
• NVidia GPU architectures and the programming model for GPGPU 

(CUDA)
• AMD/ATI GPU architectures and the programming model for GPGPU 

(CTM or Brook+) (4 guest lectures from AMD)
• IBM Cell BE architecture and the programming model for GPGPU
• CPU/GPU trade-offs
• Stream processors
• Vector processors
• Data-level parallelism and the associated programming patterns
• Thread-level parallelism and the associated programming patterns
• Future multi-core/many-core architectures
• Future programming support for multi-core/many-core processors
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AssignmentsAssignments

• Homework
– #0 “Hello world!” using an emulator of Nvidia G80 processors
– #1 A small program: Parallel reduction (both on an emulator and 

the actual graphics processors)
– #2 Matrix Multiplication
– #3 Prefix Sum Computation

• Presentation
– an in-depth presentation based on some research papers (either on 

a particular processor or on GPGPU in general)
• Projects

– Select one processor model from Nvidia G80, ATI streaming 
processors, and IBM Cell processors.

– Select (or find your own) an application
– Try to improve the performance using the GPU that you selected

• Cross platform comparison   
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ExperimentsExperiments

• Lab: HEC 238 

• Get the keys to HEC 238 from
– Martin Dimitrov (in charge of experimental environment for 

AMD/ATI GPUs) dimitrov@cs.ucf.edu
– Hongliang Gao (in charge of experimental environment for 

IBM Cell processors) hgao@cs.ucf.edu
– Jingfei Kong (in charge of experimental environment for 

Nvidia G80 GPUs) jfkong@cs.ucf.edu

• Schedule the time within the group
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AcknowledgementAcknowledgement

• Some material including lecture notes are based on the 
lecture notes of the following courses:

• Programming Massively Parallel Processors (UIUC)
• Multicore Programming Premier: Learn and Compete 

Programming for the PS3 Cell Processors (MIT)
• Multicore and GPU Programming for Video Games

(GaTech)
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Computer Science at a Crossroads (D. Patterson)Computer Science at a Crossroads (D. Patterson)

• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick 

Wall
– Uniprocessor performance now 2X / 5(?) yrs
⇒ Sea change in chip design: multiple “cores”

(2X processors per chip / ~ 2 years)
• More simpler processors are more power efficient

• The Free (performance) Lunch is over: A Fundamental 
Turn Toward Concurrency in Software 
– The biggest sea change in software development since the 

OO revolution is knocking at the door, and its name is 
Concurrency (by Herb Sutter)
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Problems with Sea ChangeProblems with Sea Change

• Algorithms, Programming Languages, Compilers, Operating 
Systems, Architectures, Libraries, … not ready to supply 
Thread Level Parallelism or Data Level Parallelism for 1000 
CPUs / chip, 

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by 

computer architects and compiler writers alone, but also cannot 
be solved without participation of computer architects

• Modern GPUs run hundreds or thousands threads / chip
• Shifts from Instruction Level Parallelism to Thread Level 

Parallelism / Data Level Parallelism
• GPGPU is one such example
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GPU at a GlanceGPU at a Glance

• 1st: Designed for graphics applications

• Trend: converging the different functions into a 
programmable model

• To suit graphics applications
– High memory bandwidth

• 86.4 GB/s (GPU) vs. 8.4 GB/s (CPU)
– High FP processing power

• 400~500 GFLOPS (GPU) vs. 30~40 GFLOPS (CPU)

• Can we utilize the processing power to perform 
computing besides graphics? 
– GPGPU



7

13

GPU vs. CPUGPU vs. CPU

G80 Die (90 nm tech.) Photo IBM Power 6 Die (65 nm tech.) Photo
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IBM Power 6IBM Power 6

• Outstanding Feature: 4.7 GHz; 2 cores with symmetric 
multiprocessing (SMP) support;  8MB L2 cache 
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Inside the CPU core (CDA5106)Inside the CPU core (CDA5106)

• Power 5 die
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NVidiaNVidia G80G80
• Some Outstanding features: 

– 16 highly threaded SM’s, >128 
FPU’s

– Shared memory per SM: 16KB
– Constant memory: 64 KB
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GPU vs. CPUGPU vs. CPU
• The GPU is specialized for compute-intensive, highly data 

parallel computation (exactly what graphics rendering is 
about)
– So, more transistors can be devoted to data processing rather 

than data caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU
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GPU vs. CPUGPU vs. CPU

• CPU: all these on-chip estate are used to achieve 
performance improvement transparent to software 
developers
– Sequential programming model
– Moving towards multi-core and many-core

• GPU: more on-chip resources used for floating-point 
computation
– Requires data parallel programming model
– Expose architecture features to software developers and 

software needs to explicitly taking advantage of those 
features to achieve high performance
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Things to know for a GPU processorThings to know for a GPU processor

• Thread execution model
– How the threads are executed, how to synchronize threads
– How the instructions in each/multiple thread(s) are executed

• Memory model
– How the memory is organized
– Speed and Size considerations for different types of memories
– Shared or private memory. If shared, how to ensure the memory 

ordering
• Control flow handling
• Instruction Set Architecture

• Support:
– Programming environment
– Compiler, debugger, emulator, etc.
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HW and SW support for GPGPUHW and SW support for GPGPU

• Nvidia Geforce 8800 GTX vs Geforce 7800
– Slides from the Nvidia talk given at Stanford Univ.

• Programming models (candidates for course presentation)
– CUDA
– Brook+ 
– Peak Stream
– Rapid Mind
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GeForceGeForce--8 Series HW Overview8 Series HW Overview
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From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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• SPA
– Streaming Processor Array (variable across GeForce 8-series, 8 in 

GeForce8800)
• TPC

– Texture Processor Cluster (2 SM + TEX)
• SM

– Streaming Multiprocessor (8 SP)
– Multi-threaded processor core
– Fundamental processing unit for CUDA thread block

• SP
– Streaming Processor
– Scalar ALU for a single CUDA thread

CUDA Processor TerminologyCUDA Processor Terminology

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Streaming Multiprocessor (SM)Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– 1 to 768 threads active
– Shared instruction fetch per 32 threads
– Cover latency of texture/memory loads

• 20+ GFLOPS
• 16 KB shared memory
• DRAM texture and memory access SP
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From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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G80 Thread Computing PipelineG80 Thread Computing Pipeline

• Processors execute computing threads
• Alternative operating mode specifically for computing
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• The future of GPUs is programmable processing
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CUDACUDA

• “Compute Unified Device Architecture”
• General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor
• Targeted software stack

– Compute oriented drivers, language, and tools
• Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation 
– Interface designed for compute - graphics free API
– Data sharing with OpenGL buffer objects 
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Extended CExtended C
• Declspecs

– global, device, shared, 
local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol, 

execution management

• Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

__shared__ float region[M];
... 

region[threadIdx] = image[i]; 

__syncthreads()  
... 

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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gcc / cl

G80 SASS
foo.sass

OCG

Extended CExtended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU  Assembly
foo.s

CPU Host Code 
foo.cpp

Integrated source
(foo.cu)

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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CUDA Programming Model:CUDA Programming Model:
A Highly Multithreaded CoprocessorA Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel

• Data-parallel portions of an application are executed on the 
device as kernels which run in parallel on many threads

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Thread Batching: Grids and BlocksThread Batching: Grids and Blocks
• A kernel is executed as a grid of 

thread blocks
– All threads share data memory 

space
• A thread block is a batch of 

threads that can cooperate with 
each other by:

– Synchronizing their execution
• For hazard-free shared 

memory accesses
– Efficiently sharing data through 

a low latency shared memory
• Two threads from two different 

blocks cannot cooperate
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Courtesy: NDVIAFrom the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Block and Thread IDsBlock and Thread IDs

• Threads and blocks have IDs
– So each thread can decide 

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …
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Courtesy: NDVIA
From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Programming Model:Programming Model:
Memory SpacesMemory Spaces

• Each thread can:
– Read/write per-thread registers
– Read/write per-thread local memory
– Read/write per-block shared memory
– Read/write per-grid global memory
– Read only per-grid constant memory
– Read only per-grid texture memory

Grid
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Memory

Texture
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Global
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Shared Memory

Local
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Memory
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Host• The host can read/write 
global, constant, and texture 
memory

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Access TimesAccess Times

• Register – dedicated HW - single cycle
• Shared Memory – dedicated HW - single cycle
• Local Memory – DRAM, no cache - *slow*
• Global Memory – DRAM, no cache - *slow*
• Constant Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality
• Texture Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality
• Instruction Memory (invisible) – DRAM, cached

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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CompilationCompilation

• Any source file containing CUDA language extensions must 
be compiled with nvcc

• nvcc is a compiler driver
– Works by invoking all the necessary tools and compilers like 

cudacc, g++, cl, ...
• nvcc can output:

– Either C code
• That must then be compiled with the rest of the 

application using another tool
– Or object code directly

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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LinkingLinking

• Any executable with CUDA code requires two dynamic 
libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Debugging Using theDebugging Using the
Device Emulation ModeDevice Emulation Mode

• An executable compiled in device emulation mode (nvcc -
deviceemu) runs completely on the host using the CUDA 
runtime

– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• When running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-versa
– Detect deadlock situations caused by improper usage of 

__syncthreads

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu
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Device Emulation Mode PitfallsDevice Emulation Mode Pitfalls

• Emulated device threads execute sequentially, so simultaneous 
accesses of the same memory location by multiple threads
could produce different results.

• Dereferencing device pointers on the host or host pointers on 
the device can produce correct results in device emulation 
mode, but will generate an error in device execution mode

• Results of floating-point computations will slightly differ 
because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate results

• There are various options to force strict single precision on 
the host

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu


