
1

School of Electrical Engineering and Computer Science
University of Central Florida

ST: CDA 6938 MultiST: CDA 6938 Multi--Core/ManyCore/Many--Core Architectures and Core Architectures and
ProgrammingProgramming

http://csl.cs.ucf.edu/courses/CDA6938/http://csl.cs.ucf.edu/courses/CDA6938/

Prof. Huiyang Zhou

2

OutlineOutline

• Administration
• Motivation

– Why multi-core many core processors? Why GPGPU?
• CPU vs. GPU
• An overview of Nvidia G80 and CUDA

2

3

Description (Syllabus)Description (Syllabus)

• High performance computing on multi-core / many-core
architectures

• Focus:
– Data-level parallelism, thread-level parallelism
– How to express them in various programming models
– Architectural features with high impact on the performance

• Prerequisite
– CDA5106: Advanced Computer Architecture I
– C programming

4

Description (cont.)Description (cont.)

• Textbook
– No required textbooks, four optional ones
– Papers & Notes

• Tentative grading policy
– +/- policy will be used
– Homework: 25%
– In-class presentation: 10%
– Participation in discussion: 5% (Not applicable to FEEDS

students)
– Project: 60%

• Including another in-class presentation
– A:90~100 B+: 85~90 B: 80~85 B-: 75~80.

3

5

Who am IWho am I

• Assistant Professor at School of EECS, UCF.

• My research area: computer architecture, back-end
compiler, embedded systems
– High Performance, Power/Energy Efficient, Fault Tolerant

Microarchitectures, Multi-core/many-core architectures
(e.g., GPGPU), Architectural support for software
debugging, Architectural support for information security

6

TopicsTopics

• Introduction to multi-core/many-core architecture
• Introduction to multi-core/many-core programming
• NVidia GPU architectures and the programming model for GPGPU

(CUDA)
• AMD/ATI GPU architectures and the programming model for GPGPU

(CTM or Brook+) (4 guest lectures from AMD)
• IBM Cell BE architecture and the programming model for GPGPU
• CPU/GPU trade-offs
• Stream processors
• Vector processors
• Data-level parallelism and the associated programming patterns
• Thread-level parallelism and the associated programming patterns
• Future multi-core/many-core architectures
• Future programming support for multi-core/many-core processors

4

7

AssignmentsAssignments

• Homework
– #0 “Hello world!” using an emulator of Nvidia G80 processors
– #1 A small program: Parallel reduction (both on an emulator and

the actual graphics processors)
– #2 Matrix Multiplication
– #3 Prefix Sum Computation

• Presentation
– an in-depth presentation based on some research papers (either on

a particular processor or on GPGPU in general)
• Projects

– Select one processor model from Nvidia G80, ATI streaming
processors, and IBM Cell processors.

– Select (or find your own) an application
– Try to improve the performance using the GPU that you selected

• Cross platform comparison

8

ExperimentsExperiments

• Lab: HEC 238

• Get the keys to HEC 238 from
– Martin Dimitrov (in charge of experimental environment for

AMD/ATI GPUs) dimitrov@cs.ucf.edu
– Hongliang Gao (in charge of experimental environment for

IBM Cell processors) hgao@cs.ucf.edu
– Jingfei Kong (in charge of experimental environment for

Nvidia G80 GPUs) jfkong@cs.ucf.edu

• Schedule the time within the group

5

9

AcknowledgementAcknowledgement

• Some material including lecture notes are based on the
lecture notes of the following courses:

• Programming Massively Parallel Processors (UIUC)
• Multicore Programming Premier: Learn and Compete

Programming for the PS3 Cell Processors (MIT)
• Multicore and GPU Programming for Video Games

(GaTech)

10

Computer Science at a Crossroads (D. Patterson)Computer Science at a Crossroads (D. Patterson)

• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick

Wall
– Uniprocessor performance now 2X / 5(?) yrs
⇒ Sea change in chip design: multiple “cores”

(2X processors per chip / ~ 2 years)
• More simpler processors are more power efficient

• The Free (performance) Lunch is over: A Fundamental
Turn Toward Concurrency in Software
– The biggest sea change in software development since the

OO revolution is knocking at the door, and its name is
Concurrency (by Herb Sutter)

6

11

Problems with Sea ChangeProblems with Sea Change

• Algorithms, Programming Languages, Compilers, Operating
Systems, Architectures, Libraries, … not ready to supply
Thread Level Parallelism or Data Level Parallelism for 1000
CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by

computer architects and compiler writers alone, but also cannot
be solved without participation of computer architects

• Modern GPUs run hundreds or thousands threads / chip
• Shifts from Instruction Level Parallelism to Thread Level

Parallelism / Data Level Parallelism
• GPGPU is one such example

12

GPU at a GlanceGPU at a Glance

• 1st: Designed for graphics applications

• Trend: converging the different functions into a
programmable model

• To suit graphics applications
– High memory bandwidth

• 86.4 GB/s (GPU) vs. 8.4 GB/s (CPU)
– High FP processing power

• 400~500 GFLOPS (GPU) vs. 30~40 GFLOPS (CPU)

• Can we utilize the processing power to perform
computing besides graphics?
– GPGPU

7

13

GPU vs. CPUGPU vs. CPU

G80 Die (90 nm tech.) Photo IBM Power 6 Die (65 nm tech.) Photo

14

IBM Power 6IBM Power 6

• Outstanding Feature: 4.7 GHz; 2 cores with symmetric
multiprocessing (SMP) support; 8MB L2 cache

8

15

Inside the CPU core (CDA5106)Inside the CPU core (CDA5106)

• Power 5 die

16

NVidiaNVidia G80G80
• Some Outstanding features:

– 16 highly threaded SM’s, >128
FPU’s

– Shared memory per SM: 16KB
– Constant memory: 64 KB

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

9

17

GPU vs. CPUGPU vs. CPU
• The GPU is specialized for compute-intensive, highly data

parallel computation (exactly what graphics rendering is
about)
– So, more transistors can be devoted to data processing rather

than data caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

18

GPU vs. CPUGPU vs. CPU

• CPU: all these on-chip estate are used to achieve
performance improvement transparent to software
developers
– Sequential programming model
– Moving towards multi-core and many-core

• GPU: more on-chip resources used for floating-point
computation
– Requires data parallel programming model
– Expose architecture features to software developers and

software needs to explicitly taking advantage of those
features to achieve high performance

10

19

Things to know for a GPU processorThings to know for a GPU processor

• Thread execution model
– How the threads are executed, how to synchronize threads
– How the instructions in each/multiple thread(s) are executed

• Memory model
– How the memory is organized
– Speed and Size considerations for different types of memories
– Shared or private memory. If shared, how to ensure the memory

ordering
• Control flow handling
• Instruction Set Architecture

• Support:
– Programming environment
– Compiler, debugger, emulator, etc.

20

HW and SW support for GPGPUHW and SW support for GPGPU

• Nvidia Geforce 8800 GTX vs Geforce 7800
– Slides from the Nvidia talk given at Stanford Univ.

• Programming models (candidates for course presentation)
– CUDA
– Brook+
– Peak Stream
– Rapid Mind

11

21

GeForceGeForce--8 Series HW Overview8 Series HW Overview

TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

Streaming Processor Array

…

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

22

• SPA
– Streaming Processor Array (variable across GeForce 8-series, 8 in

GeForce8800)
• TPC

– Texture Processor Cluster (2 SM + TEX)
• SM

– Streaming Multiprocessor (8 SP)
– Multi-threaded processor core
– Fundamental processing unit for CUDA thread block

• SP
– Streaming Processor
– Scalar ALU for a single CUDA thread

CUDA Processor TerminologyCUDA Processor Terminology

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

12

23

Streaming Multiprocessor (SM)Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– 1 to 768 threads active
– Shared instruction fetch per 32 threads
– Cover latency of texture/memory loads

• 20+ GFLOPS
• 16 KB shared memory
• DRAM texture and memory access SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

24

G80 Thread Computing PipelineG80 Thread Computing Pipeline

• Processors execute computing threads
• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing
• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Generates Thread
grids based on

kernel calls

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

13

25

CUDACUDA

• “Compute Unified Device Architecture”
• General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor
• Targeted software stack

– Compute oriented drivers, language, and tools
• Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation
– Interface designed for compute - graphics free API
– Data sharing with OpenGL buffer objects
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

26

Extended CExtended C
• Declspecs

– global, device, shared,
local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads()
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

14

27

gcc / cl

G80 SASS
foo.sass

OCG

Extended CExtended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly
foo.s

CPU Host Code
foo.cpp

Integrated source
(foo.cu)

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

28

CUDA Programming Model:CUDA Programming Model:
A Highly Multithreaded CoprocessorA Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel

• Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

15

29

Thread Batching: Grids and BlocksThread Batching: Grids and Blocks
• A kernel is executed as a grid of

thread blocks
– All threads share data memory

space
• A thread block is a batch of

threads that can cooperate with
each other by:

– Synchronizing their execution
• For hazard-free shared

memory accesses
– Efficiently sharing data through

a low latency shared memory
• Two threads from two different

blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIAFrom the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

30

Block and Thread IDsBlock and Thread IDs

• Threads and blocks have IDs
– So each thread can decide

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA
From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

16

31

Programming Model:Programming Model:
Memory SpacesMemory Spaces

• Each thread can:
– Read/write per-thread registers
– Read/write per-thread local memory
– Read/write per-block shared memory
– Read/write per-grid global memory
– Read only per-grid constant memory
– Read only per-grid texture memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host• The host can read/write
global, constant, and texture
memory

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

32

Access TimesAccess Times

• Register – dedicated HW - single cycle
• Shared Memory – dedicated HW - single cycle
• Local Memory – DRAM, no cache - *slow*
• Global Memory – DRAM, no cache - *slow*
• Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
• Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
• Instruction Memory (invisible) – DRAM, cached

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

17

33

CompilationCompilation

• Any source file containing CUDA language extensions must
be compiled with nvcc

• nvcc is a compiler driver
– Works by invoking all the necessary tools and compilers like

cudacc, g++, cl, ...
• nvcc can output:

– Either C code
• That must then be compiled with the rest of the

application using another tool
– Or object code directly

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

34

LinkingLinking

• Any executable with CUDA code requires two dynamic
libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

18

35

Debugging Using theDebugging Using the
Device Emulation ModeDevice Emulation Mode

• An executable compiled in device emulation mode (nvcc -
deviceemu) runs completely on the host using the CUDA
runtime

– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• When running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-versa
– Detect deadlock situations caused by improper usage of

__syncthreads

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

36

Device Emulation Mode PitfallsDevice Emulation Mode Pitfalls

• Emulated device threads execute sequentially, so simultaneous
accesses of the same memory location by multiple threads
could produce different results.

• Dereferencing device pointers on the host or host pointers on
the device can produce correct results in device emulation
mode, but will generate an error in device execution mode

• Results of floating-point computations will slightly differ
because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate results

• There are various options to force strict single precision on
the host

From the lecture notes of ECE 498 AL by D. Kirk and W. Hwu

