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ABSTRACT
Simulation is the primary method for evaluating computer

systems during all phases of the design process. One signif-
icant problem with simulation is that it rarely models the
system exactly, and quantifying the resulting simulator er-
ror can be difficult. More importantly, architects often as-
sume without proof that although their simulator may make
inaccurate absolute performance predictions, it will still ac-
curately predict architectural trends.

This paper studies the source and magnitude of error in
a range of architectural simulators by comparing the simu-
lated execution time of several applications and microbench-
marks to their execution time on the actual hardware being
modeled. The existence of a hardware gold standard al-
lows us to find, quantify, and fix simulator inaccuracies. We
then use the simulators to predict architectural trends and
analyze the sensitivity of the results to the simulator config-
uration. We find that most of our simulators predict trends
accurately, as long as they model all of the important perfor-
mance effects for the application in question. Unfortunately,
it is difficult to know what these effects are without having a
a hardware reference, as they can be quite subtle. This calls
into question the value, for architectural studies, of highly
detailed simulators whose characteristics are not carefully
validated against a real hardware design.

1. INTRODUCTION
The FLASH project at Stanford was a large research effort

exploring methods of building large-scale shared-memory
multiprocessors. Like most architecture research today, we
relied heavily on simulation technology to evaluate architec-
tural trade-offs in the machine, and during the course of the
research developed a number of simulation methods, some
of which have been widely deployed [19]. Unlike many re-
search efforts, the FLASH project built a hardware version
of the machine, and a 32-node multiprocessor is currently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

in operation at Stanford. A running machine gives us the
(dis)advantage of being able to compare the simulations we
used to design the machine with the actual hardware to de-
termine the accuracy of our simulators. This paper describes
the results of this comparison.

The simulators in this comparison span a range of detail
from a simple, single-issue processor model without an op-
erating system to an out-of-order processor model with a
complete simulated operating system. In addition, to look
at both processor modeling effects and memory system ef-
fects, we compare simulation results with our detailed mem-
ory system simulator against those from a much simpler one.
Each simulator was built well in advance of the real hard-
ware and has been used for approximately six years to ex-
plore the behavior of the machine and make trade-offs as
the machine was designed.

Our results surprised us—overall the accuracy was not
very good, even for the most detailed processor and memory
system models. In fact, our more complex processor mod-
els were sometimes worse than simpler models in terms of
performance accuracy. One easy explanation is that the per-
formance errors that we report in Section 3 were the result
of poor simulator design on our part. This seems unlikely.
While clearly our simulation system was not bug free, both
RSIM [14] and SimpleScalar [2] share some characteristics
that caused performance errors in our systems. Industry
stories about performance differences between a new pro-
cessor and the company’s internal performance model are
also common. It is hard to believe that the entire architec-
ture community cannot design a good simulator. A much
more plausible answer is poor performance matching simply
is the expected result. Modeling modern processor perfor-
mance is difficult, requiring the writer of the simulator to
understand low-level details of the hardware, and to be able
to model these effects without greatly slowing down or com-
plicating the simulator. Bugs or omissions are common, and
without a methodology that points out something is wrong,
it is hard for the simulation writer to know that errors still
exist. As a result, simulators need to be validated against
real hardware before they provide reliably accurate perfor-
mance predictions. This result is somewhat unsettling, since
some of the finer design tradeoffs we made probably affected
performance by a smaller amount than the size of our simu-
lator error. Indeed, many contributions to the architecture
research literature report performance gains whose magni-
tude is less than the simulator modeling error we have ob-



served.
Yet, inaccurate absolute performance would not be as crit-

ical a problem if the trends predicted by simulators were
accurate. Architects rely on being able to predict the rela-
tive magnitude of performance changes across a variety of
alternative designs. For example, in a multiprocessor like
FLASH, it is critical to understand how the system will re-
spond as processor counts increase. Our results in predict-
ing performance trends are more encouraging, though still
not perfect. The most surprising result is that the simple
in-order machine model used for most of the FLASH simu-
lations predicts trends as well as the slower, more complex
out-of-order model.

2. HARDWARE AND SIMULATORS
This section briefly describes the FLASH hardware sys-

tem, followed by detailed descriptions of each of the simu-
lators in this study. It concludes with a discussion of the
methodology we use to compare the simulation results to
the real hardware, including the parameters that we vary
and the applications we use.

2.1 Hardware
The hardware used in this study is a 16-processor FLASH

(FLexible Architecture for SHared memory) machine [9].
FLASH is a cache-coherent distributed shared-memory mul-
tiprocessor that runs its cache coherence protocol on a pro-
grammable node controller, MAGIC. The exact details of
FLASH are not important to this study. Rather, what is
important is that FLASH is an aggressive design in both
the processor and memory system with abundant concur-
rency and many complex interfaces (like many other mod-
ern machines, non-trivial to simulate). The performance of
the FLASH hardware is used as the standard that all of
the simulators attempt to match. Table 1 lists important
parameters of the actual FLASH hardware.

FLASH uses the MIPS R10000 [27] as its compute pro-
cessor. The R10000 is a good example of a complex, su-
perscalar microprocessor. It has an out-of-order core that
can issue and retire up to four instructions per cycle, as well
as lockup-free on-chip primary instruction and data caches
and a lockup-free backside secondary cache. The R10000
manages its own secondary cache so all data replies and in-
tervention requests must pass through the processor to get
to the cache. For this paper, the FLASH hardware is con-
figured with a processor clock speed of 150 MHz and the
MAGIC node controller running at 75 MHz. FLASH runs a
slightly modified version of the IRIX 6.4 operating system.
Some boot code and device drivers specific to the SGI Origin
2000 are altered to boot IRIX on FLASH.

2.2 Simulators
The FLASH design effort produced a number of architec-

tural simulators over the course of approximately six years [7].
Because the focus of the FLASH project was innovation in
the memory system, most of our simulations during the de-
sign process used FlashLite, our detailed memory system
simulator. What varied as the project matured was the level
of detail used in modeling the processor and the operating
system. The two main simulators we use in conjunction with
FlashLite, Solo and SimOS, are described below. In addi-
tion, to examine the importance of simulation accuracy in
the memory system, we describe a simpler, generic NUMA

Parameter Value
Processor MIPS R10000
Number of Processors 1-16
Processor Clock Speed 150 MHz
System Clock Speed 75 MHz
Instruction Cache 32 KB, 64 B line size
Primary Data Cache 32 KB, 32 B line size
Secondary Cache 2 MB, 128 B line size
Max. IPC 4
Max. Outstanding Misses 4
Network 50 ns hops, hypercube
Memory 140 ns to first double-word
Cache Coherence Protocol dynamic pointer allocation

Table 1: FLASH hardware configuration.

memory system simulator that we will compare to FlashLite.

Solo. Our simplest simulation framework is Solo, a stan-
dard processor simulator that allows an application to be
run directly on simulated hardware. Using an OS model-
ing technique that is commonly used in both industry and
the research community, Solo models parallel threads and
shared memory, but it emulates system calls. Tango Lite [4]
and MINT [24] are two other good examples of this type
of simulator. Since Solo does not model the operating sys-
tem or any I/O behavior, it consists mainly of a processor
simulator, a memory system simulator, and a set of back-
door routines for handling system calls and page mapping.
Although lacking in system details, simulators like Solo are
easy to build and are commonly used for architectural eval-
uation.

Solo uses the Mipsy processor simulator, which models a
single-issue, in-order MIPS processor. Pipeline effects and
functional unit latencies are not simulated, so the Mipsy
processor executes one instruction per cycle in the absence
of memory stalls. Mipsy has blocking reads, but supports
both prefetching and a write buffer. Our Solo simulations
use prefetching and a four-entry write buffer in an attempt
to model the FLASH hardware as closely as possible.

We use Solo with the standard memory system simula-
tor for the FLASH machine, FlashLite [5]. FlashLite is a
multi-threaded simulator of the memory bus, MAGIC node
controller, network, memory, and I/O subsystems. One of
FlashLite’s threads is a cycle-accurate emulator of the em-
bedded protocol processor that runs the cache coherence
protocol. Other FlashLite threads model MAGIC’s external
interfaces and internal functional units with latencies ex-
tracted directly from the Verilog RTL design [6]. FlashLite
also uses the same cache coherence protocol that runs on
the FLASH hardware, though there are small modifications
to the protocol in simulation to speed the initial boot phase.
Once the application runs, however, the two protocols are
identical in instruction and data cache behavior. Although
we refer to FlashLite as the “memory system” simulator, it
actually models everything in the FLASH system other than
the main microprocessor and its caches.

SimOS. The SimOS simulation environment [19], like the
Talisman [1] and SimICS simulators [10], models the system
in enough detail to boot and run a full operating system.
We are able to run a slightly modified version of IRIX 6.4
on our simulated machine. The kernel modifications are
mostly to the boot code and I/O device drivers due to dif-



ferences between FLASH and the simulated hardware. Like
Solo, SimOS contains a processor simulator and a memory
system simulator. In addition, SimOS models the virtual
memory system (including the processor TLB), I/O devices
such as disks, ethernet, and a console. System calls and page
mapping are managed by the simulated operating system
(just like the hardware) rather than being the responsibility
of the simulator.

SimOS can be run using three processor simulators that
provide varying degrees of detail. The fastest processor sim-
ulator is Embra, a binary translation system that runs at
roughly 10x slowdown from the host microprocessor. Un-
fortunately, Embra does not model either the processor or
the memory system in enough detail to draw any useful con-
clusions. It is indispensable, however, since it allows us to
boot the operating system and position our workloads in a
reasonable amount of time via checkpointing. For generating
results, we restore from the Embra checkpoint and use one
of the more detailed simulators, Mipsy and MXS, to run the
applications. The Mipsy processor model is the same sim-
ulator used with Solo. MXS, our most detailed processor
simulator, models an out-of-order four-issue microproces-
sor. Like other generic out-of-order processor simulators [2,
14], MXS does not model any real processor in particular.
Rather, it is a generic superscalar processor model that we
have configured to be as close to an R10000 as possible.
MXS models pipeline latencies and bandwidth, and in our
experiments has the same type and number of functional
units as the R10000, as well as the same branch predic-
tion strategy. Prior to this work, MXS lacked resource con-
straints on functional units, but we added these constraints
to compare MXS fairly with our other simulators and to
make it similar to other detailed processor simulators used
in the literature. Like the Solo simulations, both Mipsy and
MXS SimOS simulations use the detailed FlashLite memory
system simulator.

NUMA. To investigate the importance of an accurate mem-
ory system model, we can replace FlashLite in both Solo and
SimOS with a generic non-uniform memory access (NUMA)
model. While FlashLite models the FLASH hardware in
great detail, the NUMA simulator models the memory sys-
tem of a generic NUMA machine. It simulates network la-
tencies, contention for main memory, and the latency through
the directory controller (MAGIC, in the case of FLASH).
However, it does not model occupancy of the directory con-
troller beyond the normal latency path, nor does it model
contention in the network or the routers. We use NUMA
as an example of the type of memory system simulator that
we might have used had we never designed and built real
hardware or had we been interested only in processor effects
and not in the details of a particular memory system.

2.3 Methodology
Although Mipsy is a simple, single-issue processor model

that makes no attempt to model the instruction-level paral-
lelism of the MIPS R10000, simulators like Mipsy are widely
used due to their ease of development and their speed (Mipsy
runs 4-5 times faster than MXS). A common technique to
allow single-issue processor models like Mipsy to model a
multiple-issue processor is to increase the speed of the pro-
cessor with respect to the memory system. The single-issue
processor cannot take advantage of ILP, so the speed in-
crease is necessary to enable the processor to make requests

Application Problem Size
FFT 1M points
Radix-Sort 2M keys
Ocean 514x514 grid
LU 768x768 matrix, 16x16 blocks

Table 2: SPLASH-2 problem sizes.

to the memory system at the same rate as the real hardware.
The correct speed for the processor model is related to the
ILP that the real processor will be able to exploit and is em-
pirically determined. The MIPS R10000 processors in the
FLASH machine run at 150 MHz. Mipsy results for proces-
sor speeds of 150 MHz, 225 MHz, and 300 MHz are presented
in Section 3 to show how well this common technique works
in practice. We do not use 4 * 150 MHz = 600 MHz, even
though the R10000 can issue and retire four instructions per
cycle, because the processor never sustains this peak perfor-
mance. We find that 300 MHz is more than sufficient to
compensate for ILP. Because MXS is a multiple-issue simu-
lator capable of exploiting ILP, its results are reported only
for the hardware processor clock speed of 150 MHz.

Our experimental setup fixes all the other parameters so
that they are identical between the simulators and the real
machine. The same application binaries are used for all
platforms. The same protocol is used in FlashLite and on
the real hardware (with transparent changes to the system
boot routines). The simulated kernel and the real kernel
differ in many of their device drivers, but for this study
there is no console or network I/O during the application
runs, and we take the average of at least 5 hardware runs to
avoid reporting any spurious system effects.

The SPLASH-2 applications [25] used in our study (FFT,
Radix-Sort, LU, and Ocean) were all compiled for use with
Solo, which has more restrictive requirements than either
SimOS or the hardware about needing older, statically-linked
ELF32 binaries. This is not a limitation of this study, and
it allows us to use identical executables on Solo, SimOS,
and the FLASH hardware. Each application includes hand-
inserted prefetch instructions to hide read latency and im-
prove parallel performance, and multiprocessor versions per-
form data placement to minimize communication and coher-
ence traffic. The problem sizes we use are shown in Table 2.
Note, however, that no matter how well or how poorly the
applications perform on the hardware, the simulators should
predict their performance!

3. RESULTS
In this section, we show how well our range of proces-

sor and memory system simulators predict actual hardware
performance. We analyze where the discrepancies occur for
each simulator and find that often the inaccuracies are in-
trinsic to the type or class of simulator and not simply our
implementation. In addition, we show that significant errors
still occur in carefully designed simulators that were used to
build real hardware. Had we not compared our simulator
results to the hardware performance, many of these errors
would have gone unnoticed.

We then explore how well the simulators predict trends.
There is a commonly held belief that even though simpli-
fied simulators will not give accurate estimates of absolute
performance, they can still be used to predict speedup and



other architectural trends. We investigate the ability of our
simulators to predict speedup and evaluate how sensitive
these results are to the memory system model used.

3.1 FLASH vs. (Simulated) FLASH
We begin by studying how well our simulators predict ac-

tual hardware performance. We describe sources of error in
our simulations and how we tuned the simulations to better
model the hardware.

3.1.1 Initial Performance Comparison
For our initial performance comparisons, we ran several

applications from the SPLASH-2 suite on both the FLASH
hardware and our simulators to see how well the simula-
tors predict FLASH hardware performance. We examined
execution time for the parallel section of each application,
normalized to the execution times on the actual hardware.
The initial four-processor results were not encouraging.

Most, but not all, of the simulator configurations were
faster than the real hardware, but none even relatively agree
and they do not track each other. For instance, SimOS-
Mipsy at 150 MHz gives a good prediction of the perfor-
mance of Ocean (low by only 7%), but it under-predicts the
execution time of Radix-Sort by 39% and over-predicts the
execution time of LU by 53%. Many of the other simula-
tors fared even worse. Solo-Mipsy at 300 MHz, for example,
under-predicts the hardware execution time by 61%!

Given the confusion in our initial multiprocessor results,
we simplify the picture and examine the initial results for
uniprocessor runs of the same applications. These results
are shown in Figure 1. The X-axis is broken down into sim-
ulator configurations for each application. The Y-axis gives
the execution times relative to the real FLASH hardware. A
value of 1.0 means that the simulator reported the same time
as the hardware. Values below 1.0 signify that the simula-
tor was executing faster than hardware and values above 1.0
mean that the simulator was running slower than hardware.
Unfortunately, the simulators and the hardware are still very
far apart. Because these applications rarely use operating
system services, we expected the Solo-Mipsy simulations to
produce nearly the same results as the SimOS-Mipsy simu-
lations, but this is not the case.

3.1.2 Sources of Mismatch
With the hardware results in hand, we were able to find

several sources of simulator error. The following sections
categorize the sources of error into performance bugs, omis-
sion of large effects, and lack of sufficient detail. Within
each category we describe the specific simulator problems
that affect the quality of the simulation results.

Bugs. Performance bugs can be subtle but disastrous to the
accuracy of simulation results. An easy trap to fall into is
to believe that just because a program runs in the simulator
without crashing or that the basic statistics seem reason-
able, the simulator is giving you a meaningful prediction of
performance. On the contrary, subtle performance bugs can
live in a production simulator for years.

For example, the MXS simulator had a bug where an in-
struction would move through the pipeline too quickly if all
of its resources were available when it issued. The simulator
ran fine and generated results that were at first glance be-
lievable, since the circumstances that triggered the bug were
not the most common case. This particular bug was found
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Figure 1: Initial uniprocessor SPLASH-2 results be-
fore simulator tuning.

by the Rivet group, which was visualizing the pipeline [22]
and noticed the modeling error.

If MXS had been designed to model a specific proces-
sor and then had been validated against it, this type of
bug would have been easy to find. However, MXS, like
other publicly-available simulators (e.g. RSIM [14] and Sim-
pleScalar [2]), was not designed to model a specific proces-
sor, so no such standard exists.

One other performance bug in the MXS simulator was
that the MIPS CACHE instruction was not implemented cor-
rectly. The instruction had invalidated a dirty line, but
the successful completion of the memory operation was not
properly communicated to the processor. As a result, a pro-
cessor would not graduate this or any other instruction for
approximately one million cycles. Eventually a timing in-
terrupt caused the processor to retry the operation, which
immediately succeeded. Since the processor recovered and
one million cycles was small relative to the total simulated
run time of the application, this problem went unnoticed for
months.

Omissions. Another class of problems in simulators is the
deliberate omission of detail. The Solo simulator, for in-
stance, does not model any operating system effects or the
TLB. The lack of an operating system is well-known to any
user of Solo, and it has long been assumed that as long as
the applications under study did not use a substantial num-
ber of operating system services (and the SPLASH-2 appli-
cations certainly fit into this category), the operating sys-
tem effects could be safely ignored. But with the advent of
SimOS, we found that the omission of the TLB and the cor-
responding lack of modeling of TLB misses in Solo were more
than a second-order performance effect. Although other re-
searchers had also noted the importance of the TLB on per-
formance [17, 23], we found the need to model the TLB for
the already highly-tuned SPLASH-2 applications surprising.

The TLB of the R10000 is small (64 entries) and the
penalty for a TLB miss is at least 65 processor cycles. The
original SPLASH-2 studies [25] were done on a simulator
without a TLB, and early SimOS studies showed that even
some of the carefully-tuned SPLASH-2 applications experi-
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Figure 2: Uniprocessor SPLASH-2 results after
blocking fixes.

ence a substantial number of TLB misses [18]. Since there
are so few entries in the TLB, it is easy for a program to
run in a regime where even though its working-set resides
in the primary data cache, it incurs a substantial number of
TLB misses. FFT, for instance, exhibits this behavior. The
SPLASH-2 studies [25] recommended blocking FFT for the
primary data cache, but with a million-point FFT, this leads
to a TLB miss on every store during the transpose phase for
both one and four-processor runs. Changing the blocking
parameters to block for the TLB improves the performance
of FFT by 14% on a uniprocessor and by 16% on four proces-
sors. Similarly, Radix-Sort has traditionally been run with
a large radix to reduce overhead. This causes a pathological
number of TLB misses. Reducing the radix from 256 to 32
on a 2 million key hardware run gives a 31% performance
improvement on a uniprocessor and 34% on four processors.

Like many researchers, the authors have previously un-
derestimated the effects of TLB misses. TLB performance
is as important as cache performance and can easily be an
application’s primary bottleneck. When a simulator does
not model the TLB [14, 25], the results should be viewed
with skepticism, as a major performance effect is missing.
As we will see later in this section, neglecting the TLB is
not the only common simplification of the virtual memory
system that can cause unacceptable simulator inaccuracies.

We changed the input parameters for FFT and Radix-
Sort to give the optimal performance on actual hardware.
All subsequent results reflect these TLB blocking fixes. Fig-
ure 2 shows the performance of our simulators running these
tuned applications. Note that the simulated times for Radix-
Sort are now much closer to the hardware times. While this
makes sense for the Solo runs, it means that SimOS was also
not modeling the cost of a TLB miss correctly. This is also
described in more detail later in this section.

The uniprocessor Ocean results in Figure 2 are surprising
because Solo predicts much slower times than either hard-
ware or SimOS-Mipsy. At first glance, this seems impossible
since the lack of operating system effects should only speed
up the program. The cause of this behavior is that Solo
predicts a secondary cache miss rate that is approximately

three times higher than that reported by SimOS-Mipsy, due
to an increased number of cache conflicts. Cache conflicts
are caused by poor layout of physical memory, which is con-
trolled by the operating system. Because Solo does not
model an operating system, it performs physical memory
allocation itself. Like many architectural simulators [2, 4,
14], Solo neglects the page-coloring algorithms used in mod-
ern operating systems. In fact, Solo is more realistic than
many simulators that dispense with virtual memory alto-
gether and operate with raw, physical addresses (or equiv-
alently, a mode where physical addresses equal virtual ad-
dresses).

The reason that operating system writers worry about
page coloring is that improper coloring can decimate the
performance of an application. It is important that in sim-
ulations that do not include an operating system, architects
give careful thought to page coloring. For instance, the
uniprocessor cache conflicts predicted by Solo for Ocean do
not occur on four processors, so Solo predicts huge super-
linear speedup for Ocean that does not occur on the hard-
ware.

We found that the lack of instruction-latency modeling
is another deliberate simulator omission that causes perfor-
mance mispredictions. Mipsy will execute one instruction
every clock cycle, unless it experiences a cache miss. In real-
ity, some instructions take far longer to execute. Radix-Sort,
for instance, executes many high-latency operations such as
integer multiplications and divisions. Similarly, Ocean ex-
ecutes many high-latency floating point operations. The
effect is that Mipsy will tend to under-predict the execution
times of Radix-Sort and Ocean. We will examine this be-
havior in more detail in the next section, once the simulators
have been tuned to correctly model memory effects.

Lack of Detail. Even when effects are modeled by the
simulator, they are not always modeled correctly. Neither
Mipsy nor MXS was designed to be an accurate model of
the MIPS R10000. The focus of the FLASH project has
been on the memory system, so the purpose of our processor
models was to generate believable streams of references that
we could use to evaluate memory effects. In the following
paragraphs, we describe how we were forced to tune our
simulation parameters so that they matched the hardware
for a set of simple microbenchmarks.

Unlike Solo, the SimOS-Mipsy and SimOS-MXS simula-
tors model the TLB of the R10000, but neither predict the
performance degradations due to TLB misses well, as is evi-
denced in Figure 1. The modeling of the TLB itself is not the
issue—the problem is the processor models do not properly
model the time associated with a TLB miss. This is typical
of many simulators that do, in fact, model a TLB [2]. On the
R10000, TLB misses are handled by an exception handler
that consists of 14 instructions. However, TLB misses take
65 cycles to execute, even if everything hits in the cache.
This strange effect occurs for three reasons: the processor
takes a large number of cycles to take and return from an
exception, nearly all the instructions are dependent, and
there are numerous pipeline-flushing co-processor instruc-
tions. The Mipsy processor model takes 25 cycles for these
14 instructions. MXS, which models instruction latency but
not the pipeline flushes associated with co-processor instruc-
tions, predicts 35 cycles. With hardware results and a mi-
crobenchmark that times TLB misses, we were able to tune
our simulators to give the correct value of 65 cycles for a



Protocol Case HW Tuned FL Untuned FL
Local, clean 587 615 (1.05) 510 (0.87)
Local, dirty remote 2201 2202 (1.00) 2152 (0.98)
Remote, clean 1484 1457 (0.98) 1311 (0.88)
Remote, dirty home 2359 2378 (1.01) 2215 (0.94)
Remote, dirty remote 2617 2658 (1.02) 2957 (1.13)

Table 3: Dependent load tests on the FLASH hard-
ware and tuned and untuned versions of the Flash-
Lite simulator (times in ns, parenthesized times are
relative to the hardware).

TLB miss. Though it is not surprising that processor models
that were not designed to model the R10000 do not predict
that processor’s cost of a TLB miss accurately, this defi-
ciency can cause researchers to overlook the primary bot-
tleneck of a simulated application, even though they believe
that they are taking TLB effects into account.

To uncover more sources of error in the processor and
memory system, we used the snbench [16] microbenchmark
tool to measure the memory latency of several protocol cases.
One test that snbench employs is a string of dependent loads
(p = *p) that all miss in the secondary cache. This tech-
nique was first introduced in lmbench [13]. The performance
of these dependent loads is more complicated than we orig-
inally thought. On a MIPS R10000, the secondary cache
tags and data are off-chip, and the occupancy of the ex-
ternal cache interface is a serious performance concern. The
R10000 has the peculiarity that while data is being returned
from the memory system and the processor is forwarding this
data to the external cache, the external cache interface is oc-
cupied for the entire duration of the cacheline transfer. Even
subsequent tag checks have to wait for the cacheline trans-
fer to complete (this problem was fixed in the R12000 [26]).
Our processor models mispredicted the latency of back-to-
back loads because they did not model the occupancy of the
secondary cache interface. We added this effect to Mipsy, so
that the local read latencies reported by snbench on Mipsy
would match the ones reported on the hardware. Once local
read latencies matched, we easily tuned FlashLite parame-
ters until read latencies for all five protocol read cases shown
in Table 3 also matched. Even before tuning, FlashLite la-
tencies already closely matched the hardware. For an archi-
tectural simulator, FlashLite is remarkably well-informed as
to memory system latency and occupancy effects since it
was developed as part of the design of the modeled hard-
ware. Without such a detailed memory system simulator,
we suspect that our initial results would have been much
worse than those reported in Figure 1.

Our simulator tuning consisted of adjusting the TLB miss
time, changing FlashLite bus timing to accommodate Mipsy’s
new and more accurate secondary cache interface, adjust-
ing the latency through the network router, and tuning the
latencies from the network to the node controller and vice-
versa. We also used snbench’s restart time test, based on
Hristea’s microbenchmark suite [8], to set Mipsy parame-
ters that determine delays between the processor core and
the processor pins.

3.1.3 Results with Tuned Simulator
Figure 3 shows the uniprocessor results with the simula-

tors tuned as we describe above. We expect that since these
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Figure 3: Final uniprocessor SPLASH-2 compari-
son.
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Figure 4: Final 4-processor SPLASH-2 comparison.

applications have a considerable amount of ILP we can get
a good estimate of performance from a Mipsy processor run-
ning at 225 MHz (corresponding to an IPC of roughly 1.5).

For FFT and LU, we see the SimOS-Mipsy simulator
at 225 MHz is almost exact. Since both Radix-Sort and
Ocean contain many high-latency instructions, however, we
expect that the Mipsy speed that best models the mem-
ory request rate will under-predict the execution time. For
these applications, SimOS-Mipsy at 225 MHz does predict
fast execution times. Even though the 150 MHz SimOS-
Mipsy runs are close to the hardware results for Radix-Sort
and Ocean, it is just coincidence. The lower clock rate is
compensating for the unmodeled instruction latencies. To
verify that incorrect instruction latencies are causing the
225 MHz SimOS-Mipsy simulation to underestimate the ex-
ecution time of Radix-Sort, we ran a simple experiment.
Radix-Sort contains many integer multiplications and divi-
sions, so we counted the number of times those two instruc-
tions were executed by Mipsy. We find that when we add 5



cycles per multiplication and 19 cycles per division (which
are the latencies for those operations on the R10000) to the
execution time, the 225 MHz SimOS-Mipsy relative execu-
tion time improves from 0.71 to 1.02!

Solo performs well for FFT, Radix-Sort, and LU—the re-
sults are nearly identical to SimOS-Mipsy. These applica-
tions have been tuned to avoid TLB misses, so there are no
relevant operating system effects. Ocean is badly mispre-
dicted by Solo, however, because Solo’s page coloring causes
conflict misses that do not occur under IRIX.

MXS displays disappointing results, being 20%–30% faster
than the real hardware. This indicates that MXS is exploit-
ing far more ILP than the R10000. For FFT and LU, we see
that MXS predicts similar times to Mipsy running at twice
its speed. While MXS is configured to match the number
and latencies of the functional units in the R10000, the fact
that MXS is a generic processor model means that it does
not handle corner cases the way a real processor would. For
example, Ofelt showed that the effects of address interlocks
in the R10000 pipeline can in some cases cause a 20%–30%
decrease in performance [11]. Unfortunately, a real super-
scalar processor is an exceedingly complex piece of hardware
and these types of unmodeled corner cases abound.

Unlike Mipsy, MXS models instruction latencies, and it is
not the fastest (worst) processor model for Radix-Sort and
Ocean. However, this mitigating factor is not a vindication
of the ILP modeling of MXS as much as it is an artifact
of the fact that Mipsy does not model the delays associated
with the high-latency instructions present in Radix-Sort and
Ocean.

The results for four processors, shown in Figure 4, indicate
that the relevant performance effects on the four processor
machine are the same as those on a uniprocessor. The only
major difference is that the physical memory allocation in
Ocean, which was done so poorly by Solo on a uniprocessor,
is not a problem for the four-processor Solo runs.

3.2 Speedup Studies
Now that we are familiar with many of the sources of

error in our simulators, we evaluate how well the simula-
tors are suited to measuring effects other than absolute per-
formance. We start by examining how well the simulators
predict speedup. We find that to first-order, the processor
model is usually unimportant for predicting speedup, pro-
vided that that the simulator models the operating system
and that it has been tuned so that memory request rate
matches the hardware. This is in contrast to recent research
stressing the importance of detailed processor models [3, 15].

3.2.1 FFT
FFT exhibits near-linear speedup on 16 processors on the

FLASH hardware. Figure 5 shows representative speedup
curves. All our simulators under-predict speedup. SimOS-
MXS and SimOS-Mipsy at both 150 MHz and 225 MHz (not
shown) give speedup predictions that are very close to each
other, and reasonably close to the hardware. Although the
quality of the processor model is important for predicting
absolute performance, the inaccuracies tend to offset when
the relative metric (in this case, speedup) is a ratio of exe-
cution times.

The important result is that the 300 MHz SimOS-Mipsy
simulator gives a very misleading prediction of the speedup
on 16 processors. This faster processor model makes mem-
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Figure 5: Speedup trend study for FFT.

1

3

5

7

9

11

13

15
�

17

S
p

ee
d

u
p

�

0
�

2 4 6
�

8
�

10 12 14 16

Legend
FLASH 150 MHz

�
SimOS-Mipsy 225 MHz Solo-Mipsy 225 MHz

Figure 6: Speedup trend study for Radix.

ory requests more frequently than the MIPS R10000, and it
causes contention that is not present in the hardware.

3.2.2 Radix-Sort
Radix-Sort exhibits a poor speedup of only 5.3 on 16 pro-

cessors, but we still expect our simulators to predict the per-
formance of the hardware they are modeling. The speedup
curves are shown in Figure 6. All SimOS runs, both with
Mipsy and with MXS (only SimOS-Mipsy at 225 MHz is
shown), accurately predict the poor speedup. Good speedup
is incorrectly predicted by Solo because, somewhat surpris-
ingly, Solo does a better job of physical memory allocation
than IRIX. Cache conflicts that are present on the hardware
and in SimOS are absent in Solo. While it is tempting to
assume that this is a problem with the application and not
the simulator, we view this as a failure of Solo to correctly
predict a performance problem.

3.2.3 Ocean and LU
Speedup studies for both Ocean and LU reveal that all

simulators give good speedup predictions, once the results
are corrected for the poor performance prediction of Solo for
uniprocessor Ocean (shown in Figure 3).

3.3 Effects of the Memory System Model
FlashLite is atypical of many commonly used memory sys-

tem simulators. Its authors were quite well-informed of ev-
ery aspect of the hardware design because the simulator’s
authors were, in fact, the hardware designers. FlashLite
even uses delays that were extracted directly from the Ver-
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Figure 7: Speedup for unplaced Radix-Sort pre-
dicted by SimOS-Mipsy at 225 MHz.

ilog model of the hardware. Most simulators are far less
detailed, so we examine how sensitive our results are to the
accuracy of the memory system model.

In this section, we use the simulators with the NUMA
memory system model in place of FlashLite. The latency
parameters in NUMA were set to match hardware latencies,
known well in advance of building the hardware. Though it
models latencies faithfully, NUMA does not model any extra
occupancy of the directory controllers beyond the normal la-
tency path. It also does not model contention in the network
or in the routers. NUMA gives similar results to FlashLite
for applications that do not experience contention, but we
would expect to see large differences for applications that
do. To highlight this effect, we study a version of Radix-Sort
with data placement disabled. Placing all of the data on a
single node will create a hotspot, and we test the simulator’s
ability to predict the performance impact of the hotspot.

Figure 7 shows the 8 and 16 processor speedup predicted
by SimOS-Mipsy at 225 MHz. All SimOS simulators give
a good speedup prediction, and we choose this one as be-
ing representative. Note that on both 8 and 16 processors,
the hardware speedup is poor due to the memory hotspot.
The tuned FlashLite simulator does a good job (within 7%)
of predicting this performance problem. In addition, the
untuned version of FlashLite also predicts speedup well.

The NUMA memory system model will underestimate
MAGIC occupancy, so we expect that to find a larger er-
ror in an application that is sensitive to occupancy. This is
indeed the case. The NUMA model is able to correctly pre-
dict that unplaced Radix-Sort will get terrible speedup, but
the actual value it predicts is off by 31% for 16 processors.

3.4 Summary
The results show that the major sources of error for our

simulators are related to the character of the simulators, and
not to our particular implementations. For our trend stud-
ies, we find that any simulator that does a reasonable job of
modeling the important performance effects of an applica-
tion will do a reasonable job of predicting trends. The details
of the processor model or memory system model, while im-
portant for predicting absolute performance, are not critical
for trend prediction, provided that the memory request rate
is similar to the processor being modeled.

This leads to the surprising result that a simple processor
model, Mipsy, run at higher speeds relative to the memory
system to model ILP, gives results that are at least as ac-
curate as the more detailed multiple-issue simulator, MXS.
Even though MXS was carefully tuned to match the MIPS
R10000 instruction latencies and functional unit bandwidth,
it does not model the intricacies of the R10000. In our stud-
ies, this lack of detail negates the advantages of modeling a
multiple-issue, out-of-order processor. MXS takes far longer
to run that Mipsy, and since it lacks any clear advantage
in the accuracy of the results, we view this as major defi-
ciency in this type of simulator. Our results validate the
common practice of using fast, in-order processor to model
an out-of-order processor. Researchers still must be careful,
however, as running the in-order model too fast can produce
poor results, as shown in Figure 5.

Our results seem to paint a rosy picture for simulators in
that as long as the important effects are modeled, the details
are not crucial. Unfortunately, it is difficult to tell what the
important performance effects are until the results are com-
pared with a hardware reference platform. If the simulator
does not faithfully model the virtual memory system of the
target hardware and operating system, for instance, the re-
sults can be seriously distorted by TLB misses and/or page-
coloring effects. There is no way to tell if the model is “good
enough” unless you compare it with hardware. Even when
a simulator does give results that are qualitatively correct,
there is still substantial error. For instance, even simulators
that we view as predicting speedups well can make predic-
tions that are off by 30% or more—a simulator error that is
often larger than the performance gains from architectural
enhancements reported in the research literature.

4. CONCLUSIONS
Building FLASH, a machine that has been extensively

simulated over the past six years, gave us a unique oppor-
tunity to evaluate some of the simulation tools that form
a core part of current architecture research. Our results,
while humbling, are not that surprising. We find that get-
ting accurate performance data from a simulator is difficult
without having a real machine to compare the simulations
against. Unfortunately, accurate performance estimation
does not seem to be getting easier. Improvement in simu-
lation technology seems to be neutralized by the increasing
complexity of the machines we are interested in simulating.
While the specific modeling problems we encountered may
be less likely to effect future systems, it seems probable that
new issues will take their place simply because without a
reference platform it is hard to know that these errors exist.

One corollary to the difficulty with producing accurate
performance numbers is that a more complex simulator does
not ensure better simulation data. We compared a num-
ber of processor simulation models and found that MXS,
our out-of-order simulation model, was no more accurate
than a simple processor model using a simple speedup fac-
tor. While MXS was configured to have the same global
resource constraints as an R10000, there are a number of
“implementation” constraints that are not modeled that in-
evitably reduce the performance of the processor. The dif-
ficulty in modeling these issues meant that the simulator
that gives the best results was, in fact, SimOS-Mipsy at
225 MHz, in spite of its simple processor model. For FFT
and LU, SimOS-Mipsy at 225 MHz predicts absolute per-



formance within 5% for both one and four-processor runs.
However, knowing how much to speed up the simple model
depended on having real hardware to compare against or
knowing something about the expected ILP in the applica-
tion.

Our results showing the effectiveness of a simple processor
model disagree with recent work by Durbhakula et al. [3]
who found that simple simulators like the Solo simulator
used in our study badly mispredicted performance. They
showed that simple simulators usually predict larger execu-
tion times than the detailed out-of-order models; a result
that we often saw as well. Our conclusion differs from theirs
however, because we found that our detailed out-of-order
simulator was substantially faster than the hardware it mod-
eled, and the performance of the real machine (the true gold
standard) was predicted at least as well and often better by
the simpler simulators.

Given the intrinsic difficulty in producing an accurate
simulator, it is comforting to know that many results only
weakly depend on the absolute accuracy of the simulator.
Even inaccurate performance simulators are useful for gain-
ing intuition about a system and they help find early stage
problems. Functionality gaps, deadlock issues, race condi-
tions, and protocol problems are all things that may be dis-
covered in simulators that do not model performance cor-
rectly. Even performance-sensitive parameters like parallel
processor speedup can be estimated well without needing
to tune the simulator, as long as the “critical” performance
aspects are modeled correctly. Unfortunately having con-
fidence that these critical issues are modeled correctly is
difficult without some validation method.

Simulation is a vital tool for architecture research. A well-
designed simulator can provide important insight into the
proposed machine. Yet our results show that architectural
trend predictions—critical to the evaluation of new archi-
tectural ideas—can be erroneous if the underlying simula-
tion lacks an important performance effect. This conclusion
demonstrates the importance of building real hardware and
should cause some concern not only for computer architects,
but for the broader research community for whom simulation
is the only method of performance evaluation. In addition
to a multitude of other benefits, building hardware allows
one to compare simulations to reality, and provides the es-
sential feedback needed to continue to improve simulation
technology.
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