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Abstract— In this paper we introduce a fast discrete event
driven simulation methodology, called KnightSim, that is in-
tended for use in the development of future computer architec-
tural simulations. KnightSim extends an older event driven simu-
lation library by (1) incorporating corrections to functional issues
that were introduced by the recent additions of stack protection,
pointer mangling, and source fortification in the Linux software
stack, (2) incorporating optimizations to the event engine, and
(3) introducing a novel parallel implementation. KnightSim
implements events as independently executable x86 “KnightSim
Contexts”. KnightSim Contexts comprise a mechanism for fast
context execution and automatically model occupancy and con-
tention, which readily lends itself to use in computer architectural
simulations. We present the implementation methodologies of
KnightSim and Parallel KnightSim with a detailed performance
analysis. Our performance analysis makes direct comparisons
between KnightSim, Parallel KnightSim, and the discrete event
driven simulation engines found in three different mainstream
computer architectural simulators. Our results show that on
average KnightSim achieves speedups of 2.8 to 11.9 over the
other discrete event driven simulation engines. Our results also
show that on average Parallel KnightSim can achieve speedups
over KnightSim of 1.78, 3.30, 5.84, and 9.16 for 2, 4, 8, and 16
threaded executions respectively.

I. INTRODUCTION

In this paper we introduce a fast discrete event driven

simulation methodology, called KnightSim, that is intended

for use in the development of future computer architectural

simulations. KnightSim extends an older proven event driven

simulation methodology known as “The Threads Package”.

The Threads Package has previously been used in at least two

publicly known computer architectural simulators [1], [2]. Our

extensions to The Threads Package are summarized as:

• A novel implementation with fixes to several functional

issues that have occurred due to the recent additions of

stack protection, pointer mangling, and source fortifica-

tion in the Linux software stack. Our implementation is

coded in the ANSI C language and supports operation in

32bit and 64bit Linux x86 environments.

• An optimized event driven simulation engine. Our imple-

mentation of KnightSim achieves a measurable speedup

over the preceding version of the methodology.

• A novel parallel implementation that automatically

parallelizes event execution at the cycle level. Our parallel

implementation, called Parallel KnightSim, is capable

of achieving further speedups over the single threaded

version.

KnightSim comprises a unique discrete event driven sim-

ulation methodology as compared to those found in modern

mainstream computer architectural simulators, like GEM5 [3]

and Multi2Sim [4]. KnightSim implements events as inde-

pendently executable x86 “KnightSim Contexts”. By design,

KnightSim Contexts encapsulate all of the functionality and

interfaces associated with a single target simulated system

element in an individually executable package. This imple-

mentation methodology enjoys several benefits from this ap-

proach. First, occupancy and contention, which have been

proven to be a critical determinant of system performance

[5], are automatically modeled by KnightSim Contexts. Other

simulation methodologies, like those of Gem5 and Multi2Sim,

do not do this and require additional events, state flags, and

levels of abstraction to achieve a realistic occupancy and

contention model. Second, executing a KnightSim Context

only requires a long jump, see Sec. III-A. This mechanism

is faster as compared to scheduling and running an event’s

call-back function because a KnightSim Context’s stack is

not created and torn down each time the context is executed.

Finally, KnightSim Context execution can be performed in

parallel because each KnightSim Context is independently

executable in a multithreaded environment. These properties

make KnightSim a promising tool for use in the development

of computer architectural simulations.

The main contributions of this paper are:

• We present a detailed discussion, with pseudocode, of our

implementation of KnightSim and Parallel KnightSim.

• We present the results of a performance analysis of

KnightSim, Parallel KnightSim and three different event

driven simulation methodologies that are widely in use

today.

• We provide a ready-made and fully working imple-

mentation of KnightSim and Parallel KnightSim, with
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usage examples, for researchers to download and utilize.

KnightSim and Parallel KnightSim are made available as

free software and can be found on GitHub.

II. RELATED WORK

There is a long and diverse history of related work con-

cerning discrete event simulation covering a broad spectrum

of methodologies and techniques. Information regarding many

of these methods and techniques can be found over the course

of a few comprehensive and relevant surveys [6], [7], [8].

In general, related work to our own falls into the category

of discrete event simulation methodologies intended for use

in the development of computer architectural simulations.

Thus for brevity and relevance, we limit our related work

to the methodologies used in current mainstream computer

architectural simulation systems.

The implementation methodology from which KnightSim

inherits its base functionality from is called The Threads

Package and has been used in at least the FlashLite and

M2S-CGM computer architectural simulation systems [1], [2].

However despite its prior usage, implementation details re-

garding The Threads Package itself have previously been little

discussed. Our implementation of KnightSim preserves the

interfaces of The Threads Package making them functionally

equivalent to each other. However, KnightSim incorporates

a completely redesigned and optimized implementation that

results in (1) fixes to functional issues that otherwise render the

methodology non-functional in modern Linux distributions,

(2) a significant performance enhancement, and (3) a novel

parallelized implementation that is further still capable of

higher levels of performance.

Examples of directly related work regarding other discrete

event simulation methodologies used in current mainstream

computer architectural simulation systems can be found in

GEM5 [3], Multi2Sim [4], Ruby [9], and their derivative

computer architectural simulation systems, such as Gem5-

GPU [10] and FusionSim [11]. Each of these computer archi-

tectural simulation systems employ a discrete event simulation

tool that utilizes a similar technique. In each, the discrete

event simulation engine works by scheduling and executing a

predetermined event and callback function at a specified cycle.

In essence, the discrete event simulation engine’s scheduler

will call the function passed to it when the number of cycles

provided by the developer transpires. Ruby employs a slightly

different technique. In Ruby messages are enqueued in buffers

linking modeled system elements together. The buffers impose

variable latency and bandwidth on inserted events. Simulation

execution proceeds by invoking a callback function for the

next scheduled event in a given event buffer.

In comparison to the modeling methodologies incorporated

in the other computer architectural simulation systems pre-

sented here, KnightSim utilizes a different approach to event

execution by implementing events as independently executable

x86 “KnightSim Contexts”. As presented in Sec. I, KnightSim

Contexts encapsulate all of the functionality and interfaces

associated with a single simulated system element in an exe-

cutable package. KnightSim Contexts are treated as simulation

objects that are scheduled for execution by an advance and

await mechanism. In this approach occupancy and contention

are then automatically modeled by KnightSim Contexts. In the

other approaches discussed here, researchers must endeavor

to carefully model the latency, occupancy, and contention

incurred by the modeled resource. Since these simulation

features are not an inherent part of the mechanism, such

modeling must be implemented manually with a collection

of events, flags, and appropriate execution timings.

Other parallel discrete event simulation techniques have pre-

viously been researched as well, such as distributed comput-

ing [12], [13], processor behavior prediction [14], [15], timing

approximations [16], and instruction-driven timing [17]. In

comparison, Parallel KnightSim parallelizes event execution

by dividing KnightSim Contexts into batches for execution in

parallel at each simulated cycle.

III. KNIGHTSIM IMPLEMENTATION METHODOLOGY

The makeup of a KnightSim Context is shown in Alg. 1.

The context is defined by functions that encapsulate all of

the user’s desired functionality and interfaces associated with

the simulated element. During simulation execution, contexts

await until they are notified that they should execute by an

advance from one or more previously running contexts, but

will not execute until they are ready. Contexts currently in

the run state may pause any number of simulation cycles or

await a future event to assess a latency. Simulation cycle time

increases once all contexts have either entered a pause or await

state.

Algorithm 1 A KnightSim Context

1: procedure USER FUNCTION(context∗ ctx)

2: long long i← 1;
3: \\Other local variables here
4: loop
5: await(my eventcount, i++, ctx);
6: \\Do work after being advanced
7: pause(1, ctx); � Charge a latency

8: \\Finish doing work
9: advance(neighboring eventcount, ctx);

10: \\Clean up and return to await state
11: end loop
12: return
13: end procedure

The context’s assessed latency during the paused or await

state provides the mechanism to automatically model the

occupancy of that context as no other work can be performed

by the context during that time. Contention is automatically

modeled as contexts must compete for modeled system re-

sources. Individual contexts stall by pausing or awaiting as

they wait for access to a particular resource. These additional

stalls result in longer access latency for current and subsequent
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Algorithm 2 Globals

1: globals
2: if wordsize == 64 then
3: typedef long int jmp buf [8];
4: else if x86 64 then
5: typedef long long int jmp buf [8];
6: else
7: typedef int jmp buf [6];
8: end if
9:

10: typedef struct context{
11: jmp buf buf ; � Buffer for CPU registers

12: unsigned long long count;
13: void (∗start)(struct context∗); � Context’s func

14: char∗ stack; � Context’s stack

15: int stacksize;
16: struct context∗ next ctx; � Context’s batch list

17: } context;
18:

19: typedef struct eventcount{
20: struct context∗ next ctx;
21: unsigned long long count;
22: } eventcount;
23: end globals

invocations as contexts wait for modeled hardware resources

to become available.

A. Events as KnightSim Contexts

KnightSim implements events as KnightSim Contexts,

which are independently executed by the CPU at runtime. A

context is represented by a struct, that defines the context itself,

and one or more eventcounts [18]. Pseudocode describing

our implementation of contexts and eventcounts is shown in

Alg. 2.

The context structure comprises a jump buffer, count, func-

tion pointer, stack pointer, stack size, and context pointer. The

jump buffer is a primitive data type that is utilized by our hand

implemented setjmp() and longjmp() assembly functions.

Our implementations of setjmp() and longjmp() correct

functional issues introduced by the recent additions of stack

protection, pointer mangling, and source fortification in the

Linux software stack. Usage of the standard Libc setjmp()

and longjmp() functions will render this methodology non-

functional in modern Linux distributions. Determination of the

correct data type and size of the context’s jump buffer is shown

at the top of Alg. 2. The context’s count is used to synchronize

the context with an eventcount’s state. The context’s function

pointer is assigned the address of the user’s provided entry

function. The stack pointer points to an allocated region of

memory of user provided stack size. Each context’s stack

is unique, resides in user memory space, and contains that

context’s execution data. Contexts execute in a shared memory

space and can operate on global C/C++ objects as well.

The context pointer is used to form a singly linked list that

comprises a batch of contexts that are ready to run at a given

Algorithm 3 Context Initialization

1: procedure CTX INIT((∗func)(context∗), int size)

2: context∗ ctx← NULL;
3: ctx← (context∗)malloc(sizeof(context));
4: ctx−>count← sim cycle;
5: ctx−>stack ← (char∗)malloc(size);
6: ctx−>stacksize← size; � Stack overflow check

7: ctx−>start← func; � User defined function

8: ctx−>buf [ip]← context start();
9: ctx−>buf [sp]← stack top ptr;

10: ctx−>next ctx← NULL;
11: ctx hash insert(ctx, ctx−>count&ROWS);
12: return
13: end procedure

cycle. When a context enters the pause or await state the next

context in the list is executed until the list is empty.

Eventcounts are objects that provide a mechanism with

which to determine if a context should be placed in the run

or await state. Eventcounts comprise a count that is used as

an incrementer and a pointer to a context that is awaiting an

advance of the eventcount. The eventcount’s count records the

number of times the eventcount has been advanced. Contexts

await the advance of eventcounts and when the counts of

both an eventcount and context are equal the awaiting context

runs. Typically, each context will have at least one unique

eventcount assigned to it, but this is not required.

Context batches are stored via a hash table and are formed

as each context enters the pause state. Contexts are added to

the table by hashing the context’s designated future execution

cycle with the global hash table’s number of rows minus one.

The global hash table’s number of rows is set as a power of

two and must be large enough to ensure that pausing contexts

form batches of only one future execution cycle. We find that

a hash table size of 512 is more than sufficient to meet this

requirement. This is an optimized approach that maintains

a high level of performance and doesn’t require a modulus

operation. Selecting the next context batch to run requires

hashing the current global cycle count with the global hash

table’s number of rows minus one. A count of the number of

unique context batches referenced by the hash table is kept.

Simulation ends when the global hash table count is zero or

the simulation reaches some desired end point.

B. Initialization

Prior to simulation execution each user created eventcount

and context is initialized. Eventcount initialization is straight-

forward and comprises the allocation of the eventcount with

the use of malloc(), the initialization of the eventcount’s

count to zero, and the initialization of the eventcount’s context

pointer to NULL. Context initialization is shown in Alg. 3

and comprises the allocation of the context itself with the use

of malloc(), initialization of the context’s count, allocation

of the context’s stack with use of malloc(), assignment

of the stack size, assignment of the user’s provided entry

function, manipulation of the instruction and stack pointers in
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the context’s jump buffer, and finally insertion of the context

itself into the applicable context batch. The entry function

embodies the functionality of the element this context will

simulate, as shown in Alg. 1.

The context’s jump buffer is uninitialized after being cre-

ated. Thus, we assign a starting instruction pointer and stack

pointer by hand to give the context our desired starting

position and unique stack memory. This manual configuration

of the context’s jump buffer is what makes each context

independently executable. We ignore other CPU registers at

initialization because they will be obtained the first time

setjmp() is called. Additionally, we push a pointer to the

context onto the context’s stack for retrieval later. This allows

us to resolve information about the context after the context’s

initial jump.

Our pseudocode shows an instruction pointer assignment

as the head of a context_start() function. On initial

execution, each context will first jump to the head of this

function and then retrieve the pointer to itself. We then call the

context’s start() function and pass the pointer to the context

itself for future access. Program execution is now placed at the

head of the user’s provided entry function with resolution of

the assigned context, see Alg. 1. Additionally, our pseudocode

shows a stack pointer assignment as the top of the allocated

stack which is calculated as shown in Equ. 1.

stack top ptr = stack ptr+stack size−sizeof(int) (1)

The assignment of the instruction and stack pointers to the

context’s jump buffer is architecture dependent. The instruc-

tion pointer and stack pointers are assigned to jump buffer

positions five and four in the 32bit Linux x86 environment

and are assigned to jump buffer positions seven and six in the

64bit Linux x86 environment.

C. KnightSim Context Scheduling

Pseudocode showing the mechanisms responsible for pro-

viding KnightSim Context scheduling is shown in Alg. 4

and 5.

Placing KnightSim in the simulation state simply requires

obtaining a pointer to the first context in the initial context

batch and performing a longjmp() to the context’s starting

position. Subsequently, each context resides in either an await,

ready to run, or running state until the end of simulation. In the

single threaded version of KnightSim only one context is ever

in the running state at a time. A transition between these states

is accomplished with use of the advance(), await(), and

pause() functions. A running context executes its assigned

tasks and advances one or more eventcounts as a product of

its work by use of the advance() function. By advancing an

eventcount, the designated eventcount’s count is incremented

and the eventcount’s context pointer is checked. If the counts

of both the context and eventcount are equal the context is

removed from the eventcount and inserted next into the current

context batch as a context that should run this cycle.

After a context completes its tasks, the context then tran-

sitions to the await state by use of the await() function.

Algorithm 4 Context Scheduling

1: procedure ADVANCE(eventcount∗ ec, context∗ ctx)

2: ec−>count++;
3: if ec−>next ctx and ec−>next ctx−>count ==

ec−>count then
4: ec−>next ctx−>next ctx← ctx−>next ctx;
5: ctx−>next ctx← ec−>next ctx;
6: ec−>next ctx← NULL;
7: end if
8: return
9: end procedure

10:

11: procedure AWAIT(eventcount∗ ec, count value,
context∗ ctx)

12: if ec−>count >= value then
13: return;

14: end if
15: ctx−>count← value;
16: ec−>next ctx← ctx;
17: ctx← ctx−>next ctx;
18: if !setjmp(ec−>next ctx−>buf) then
19: if ctx then
20: longjmp(ctx−>buf);
21: else
22: sim cycle++;
23: longjmp(context select());
24: end if
25: end if
26: return
27: end procedure
28:

29: procedure PAUSE(count value, context∗ ctx)

30: value← value+sim cycle;
31: context∗ ctx ptr ← ctx;
32: ctx← ctx−>next ctx;
33: ctx hash insert(ctx ptr, value&ROWS);
34: if !setjmp(ctx ptr−>buf) then
35: if ctx then
36: longjmp(ctx−>buf);
37: else
38: sim cycle++;
39: longjmp(context select());
40: end if
41: end if
42: return
43: end procedure

The context will assign itself a count on which it will await,

remove itself from the current context batch, assign itself to the

designated eventcount’s context pointer, and store the current

position in its jump buffer. Simulation execution can then jump

to the next context in the current context batch or, if this batch

is finished, increment the global cycle count and select the next

batch. A running context may also assess a latency with the

use of the pause() function. Assessing a latency stops the
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Algorithm 5 Context Scheduling Continued

1: procedure CONTEXT SELECT(void)

2: context∗ ctx ptr ← NULL;
3: if table count then
4: do
5: ctx ptr ← table[sim cycle&ROWS];
6: while !ctx ptr and sim cycle++;
7: table[sim cycle&ROWS]← NULL;
8: table count--;
9: else

10: sim end();
11: end if
12: return ctx ptr−>buf ;
13: end procedure

current context from running until a future global cycle count

is reached, where the context will then automatically resume

execution. The pausing context is removed from the current

context batch and added to a context batch in the global hash

table that is awaiting the same future global cycle count. If the

addition to the global hash table results in a new context batch

record the global hash table’s count is incremented. Lastly, we

store the current position in the pausing context’s jump buffer.

Simulation execution can then jump to the next context in the

current context batch or, if this batch is finished, increment

the global cycle count and select the next context batch.

The next context batch is selected with the

context_select() function. We select the next context

batch by iterating through the global hash table until we

obtain a valid pointer to a batch of contexts. The global

cycle count is incremented with each required iteration and

reference of the hash table. Each removal of a context batch

from the hash table results in a decrement of the global hash

table’s count. As mentioned before, simulation ends when the

global hash table’s count reaches zero.

IV. PARALLEL KNIGHTSIM IMPLEMENTATION

METHODOLOGY

We developed KnightSim with an eye towards ultimately

parallelizing it. Therefore, parallelizing KnightSim only re-

quires a few changes which we highlight in this section. In

general, the approach to parallelizing KnightSim is summa-

rized best as splitting a given cycle’s context batch into a

balanced group of smaller context batches and then executing

the group of context batches over an appropriate number of

threads. This results in a discrete event driven simulation

methodology that automatically parallelizes event execution

at the cycle level.

Parallel KnightSim utilizes a pool of POSIX threads and a

2D global hash table, both of configurable size. Threads are

assigned to columns in the global hash table based on their

thread IDs. Pseudocode showing our thread control function

is shown in Alg. 6. After creation, each thread sets its thread

affinity and then spins while it waits for simulation execu-

tion to begin. Once simulation execution begins, each thread

performs a setjmp() which records that specific position for

Algorithm 6 Thread Control

1: procedure THREAD START(void∗ id)

2: volatile bool lf lag ← false;
3: thread set affinity((long)id);
4: while(gflag! = lf lag){}; � Wait for sim execution

5: setjmp(thread buf [pthread self() mod SIZE]);
6: lf lag ← !lf lag; � Invert the local status flag

7: if sync sub and fetch(&threadnum, 1) then
8: while(gflag! = lf lag){}; � wait for last thread

9: else
10: sim cycle++;
11: threadnum← SIZE;
12: gflag ← lf lag; � Last thread resets the flags

13: end if
14: context select((long)id); � Contexts run next batch

15: return
16: end procedure

each thread to return to at the end of each cycle. Threads

access their jump buffers by use of a global jump buffer array

and hash of their pthread handles and thread pool size. The

threads then perform their first global cycle synchronization

by entering a cycle barrier. Each thread inverts a local barrier

flag and then atomically decrements a global int with a value

of the thread pool size. All threads but the last to arrive spin

while waiting for a global barrier flag update. The last thread

to arrive is tasked with incrementing the global cycle count

and resetting the global int. The last thread then inverts the

global barrier flag as well, which releases all threads and

places overall execution in the next cycle.

At the start of each new cycle all threads enter a modified

context_select(). Like before, each thread checks the

value of the global hash table’s count. If the count is greater

than zero each thread then consults the appropriate column and

row of the context table and determines if there is a context

batch to run this cycle or not. If a thread finds a context

batch it removes the context batch from the global hash table

and then atomically decrements the global hash table’s count.

The thread then performs a longjmp() to the last position

of the first context in the batch. If a thread does not find a

context batch to run the thread performs a longjmp() back

to thread_start() where the thread then enters the cycle

barrier and waits for the other running threads to return. When

simulation ends, each thread returns and is collected by the

main process with use of pthread_join().

Simulation flow control in await() and pause() is modi-

fied as well. At the end of await() and pause() each thread

performs a longjmp() to the next context’s last position

if there is another context to run. However, if there are no

longer any contexts to run the thread’s work has ended for

the cycle. The thread then performs a longjmp() back to

thread_start() where the thread then enters the cycle

barrier. All threads return to thread_start() and enter

the cycle barrier at the end of each cycle before simulation

execution continues into the next cycle.
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V. PERFORMANCE EVALUATION

For our performance evaluations, we make direct perfor-

mance comparisons between KnightSim, Parallel KnightSim,

and the discrete event driven simulation engines found in

Gem5 [3], Multi2Sim [4], and M2S-CGM [2]. We make com-

parisons to this selection of discrete event driven simulation

engines because the simulators in which they are used are

relevant, widely recognized, and have been used in recent

computer architectural simulation related publications. For the

purposes of our experiments, we refer to the discrete event

driven simulation engines found in Gem5, Multi2Sim, and

M2S-CGM as Gem5-Event, Esim, and The Threads Package

respectively. We refer to KnightSim and Parallel KnightSim

as KS and PKS N respectively. For PKS, the “ N” denotes

the number of specified threads used in each PKS trial.

A. Experimental Setup

We conduct all experiments on our test system comprising

a 16 core Intel Xeon E5-2697A v4 processor running at

2.6 GHz - 3.6 GHz and ample system memory running at

2400 MHz. In all test cases we measure execution time over

the equivalent simulate() function. Our measured execution

times do not include time spent in regions of code associated

with setup, initialization, or cleanup activities. Additionally,

we have removed non-essential code, like asserts, from each

test application.

Gem5-Event and Esim employ a similar implementation

approach that establishes an event list with associated callback

functions upon initialization. During execution, events are

scheduled to run in either the current cycle or a future cycle

using an equivalent schedule_event() function. Scheduled

events are placed in a data structure and removed for execution

at a later simulation cycle. Gem5-Event declares class objects

as sim objects whose member functions can be declared as

events. Therefore, we implement an event in Gem5-Event as

a single class member function that is initially scheduled to

run by the class’s constructor during initialization time. Esim

declares domain event handlers that are meant to handle a

number of domain specific sub events. Thus, we implement an

event in Esim as a single domain level event that is registered

and scheduled to run at initialization time. For both Gem5-

Event and Esim, each time an event is executed the event

schedules itself to run again in one cycle.

KS, PKS, and The Threads Package implement events

as contexts, however the implementation of The Threads

Package is completely different and does not benefit from the

extensions presented in this paper. As discussed in Sec. III-C,

scheduling a pause of one cycle during context execution is

functionally identical to scheduling an event to occur one cycle

later, as in Gem5-Event and Esim. For KS, PKS, and The

Threads Package an event is implemented as a single context

that is registered and scheduled to run at initialization time.

Each time the context is run, the context schedules itself to

run again after one cycle by pausing one cycle.

B. Determining Event Engine Usage

We wish to determine how often a typical computer archi-

tectural simulator makes use of its event engine. To answer this

question we need to determine what a realistic range is in terms

of (1) the average and maximum number of executed events

per simulated cycle and (2) the average and maximum number

of physical cycles per event. These two measurements give us

a sense of the amount of pressure placed on the event engine

and how many physical cycles it takes to process an event

on average. To measure these values we utilize M2S-CGM

and run a sampling of the Rodinia OMP benchmarks [19].

We take measurements over the benchmark’s parallel section

while varying the size of the simulated system. M2S-CGM

provides a system wide model with a configurable number of

CPU cores, L1, L2, and L3 caches, switching network, system

agent, memory controller, and SDRAM.

Sim Cores Avg Events Max Events
1 13 26

2 20 38

4 34 58

8 60 95

16 113 165

32 215 291

64 416 529

128 813 980

Physical Cycles Avg Cycles Max Cycles
2680 9945

Table 1: Measured Event Engine Usage

Our findings are shown in Table 1 and are used to form the

basis of our experiments. We establish that a realistic range

of expected events per simulated cycle is approximately 13,

or fewer, for small simulation models to approximately 980,

or more, for large simulation models. From the results, it

is apparent that the predominance of computer architectural

simulation models used in relevant research would fall in the

category of approximately 113 events, or fewer, per simulated

cycle.

We also establish that a typical computer architectural

simulator utilizing a context based event engine performs an

average of 2680 physical cycles of work per event. However,

we observed that in some cases this can be considerably

higher. We utilize this data point to determine if the usage of

Parallel KnightSim for the purposes of parallelizing computer

architectural simulations is viable or not.

C. Experimental Results: Single Threaded

For our single threaded experiments we measure overall

speedup over eight test cases where we execute 16, 32, 64,

128, 256, 512, 768, and 1024 events per cycle for one million

cycles. The selected test cases provide a good range in terms of

varied simulated system size, as established in Sec. V-B. The

selected test cases also facilitate our comparisons to Parallel

KnightSim executions in the following section. Prior to taking
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performance measurements we verified that all test applica-

tions function correctly by observing the value of a global

int that was incremented by each event execution. However,

in our measured experiment all events perform no work. We

found one million simulated cycles to be more than sufficient

to reach a steady state for performance measurements.

Figure 1: Single Threaded Performance Results

The experimental results for our single threaded executions

are shown in Fig. 1. The results for each test case are

normalized to the execution results of The Threads Package.

KS demonstrated strong overall performance with an average

speedup of 3.51, 11.95, and 2.8 over the execution results

of The Threads Package, Esim, and Gem5-Event respectively.

However, more importantly KS showed an average speedup of

4 over both The Threads Package and Gem5-Event in the range

of 16 to 128 events per cycle. This range represents the most

likely usage range of event engines in computer architectural

simulations.
The results for KS show that our extensions to The Threads

Package have provided a significant boost in the method-

ology’s overall performance and that the methodology also

outperforms those of Gem5-Event and Esim. Gem5-Event

proved to scale very well with larger simulated system sizes,

but did not outperform KS over the selected test case range.

Esim provided a consistent performance baseline, but did not

exceed the performance of KS, Gem5-Event, and The Threads

Package. An inspection of Esim’s code revealed that Esim

performs a calloc() with the scheduling of each event and

a free() at the end of each event’s execution. This is the

leading cause of the performance disparity between Esim and

the other event engines.

D. Experimental Results: Multithreaded
Drawing on the experiences gained by implementing Par-

allel KnightSim, it is apparent that the two most critical

factors impacting overall parallel performance in computer

architectural simulations are (1) the number of events executed

per cycle and (2) the amount of work each event performs

when executing. These two factors inversely effect the negative

impacts to parallel performance imposed by the global cycle

barrier and other pthread related overhead. Parallel speedups

are achievable once the combined effects of these two factors

amortize the cost of the serial section.

Figure 2: Multithreaded Performance Results Without Work

Experimental results regarding the impact of the number

of events per cycle on overall parallel performance is shown

in Fig. 2. In this experiment we maintain the configuration

described in Sec. V-C, but parallelize the workload with PKS.

When events perform no work the cost of the global cycle

barrier and other pthread related overhead is apparent in the

results. However, increasing the number of events per cycle

begins to amortize the cost of the serial section when executing

approximately 256 events per simulated cycle in parallel. At

approximately 512 events per simulated cycle, and higher,

parallelization results in measurable speedups.

Figure 3: Multithreaded Performance Results With Work

We can determine the amount of work each event must

perform to amortize the cost of the serial section by adding

work to the events executed by both KS and PKS 1 until

their overall performance is equal. The results of our trials

showed that, on average, events must work for approximately

1700 physical cycles, in conjunction with the number of events

being executed per cycle, to amortize the cost of the serial

section. Fig. 3 shows the impact of the two factors combined.

Again, we maintain the configuration described in Sec. V-C,

but include a workload of approximately 1700 cycles in both

KS and PKS events and normalize all results to those of KS.

The results show that for each test case the cost of the serial

section is amortized as both KS and PKS 1 have an equal

overall performance of 1. We observed that PKS 2, PKS 4,

PKS 8, and PKS 16 demonstrated an average speedup over

KS and PKS 1 of 1.78, 3.30, 5.84, and 9.16, respectively.
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Considering that PKS does not need to execute an unrealis-

tically high number of events per cycle to gain parallel perfor-

mance and that the imposed 1700 physical cycle threshold is

lower than the number of physical cycles measured in Table 1,

it is evident that utilizing PKS to parallelize small to large

computer architectural simulations is viable and can result in

measurable speedups over the established performance of KS.

E. Parallel KnightSim In The Wild

As discussed in Sec. IV, Parallel KnightSim automatically

parallelizes event execution at the cycle level. However, thread

safety must be taken into account when utilizing Parallel

KnightSim. Race conditions can occur between contexts that

share data and that are being executed by two or more threads

in a given cycle. However, these race conditions can be

avoided by assigning contexts that share data to the same

context batch so that they are run by the same thread. In

places where a natural division of the contexts is not possible

the inclusion of thread-safe techniques in only those contexts

will eliminate the race condition. Context stealing can also

occur when a context of one thread advances the context of

another thread. Context stealing can be avoided by using a

“safety” context which allows the advancee’s owning thread

to complete the advancement task on behalf of the advancer’s

owning thread. Ultimately, optimized parallel simulation per-

formance is gained by balancing the simulation model’s size

and simulated architectural structure with a properly specified

number of threads and context-to-thread assignment.

VI. CONCLUSION

In the first half of this paper we introduce KnightSim

and discuss the benefits of KnightSim’s event implementation

approach regarding how KnightSim Contexts automatically

model simulated occupancy and contention. We then provide

detail regarding KnightSim’s implementation methodology.

We discuss critical items pertaining to how KnightSim is

used and how events are instantiated as KnightSim contexts.

Then, we discuss the implementation methodology of Parallel

KnightSim.

In the second half of this paper we report the results of a de-

tailed performance analysis of discrete event driven simulation

engines in computer architectural simulators and the results of

a direct comparison between KnightSim, Parallel KnightSim,

and the discrete event driven simulation engines found in

Gem5, Esim, and M2S-CGM. Our study provides insight into

the average number of events executed per simulated cycle and

average number of physical cycles it takes to process an event

in a typical computer architectural simulator. We establish that

small simulation models execute approximately 13 events per

simulated cycle, or fewer, and that large simulation models

execute approximately 980 events per cycle, or more. Our

overall performance results showed that on average KnightSim

achieves speedups of 2.8 to 11.9 over the other discrete event

driven simulation engines presented in this paper. Our results

also show that, on average, Parallel KnightSim can achieve

speedups over KnightSim of 1.78, 3.30, 5.84, and 9.16 in

2, 4, 8, and 16 threaded executions respectively. Based on

the performance results presented here and on the additional

benefits of KnightSim’s context-based approach we believe

that KnightSim is a promising tool for use in the development

of future computer architectural simulations.

Ready-made and fully working implementations of

KnightSim and Parallel KnightSim, with usage examples, are

made available as free software and can be found on GitHub.
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